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Executive Summary 
This research addresses the deviations between Target Off-Block Time (TOBT) and Actual Off-Block Time 
(AOBT) in aircraft turnaround processes at Schiphol Airport. Accurate TOBT prediction is critical for effective 
airport operations, significantly impacting runway capacity and overall flight schedules. Despite the 
implementation of the Airport-Collaborative Decision Making (A-CDM) system, differences between TOBT 
and AOBT frequently occur, leading to delays and inefficiencies. The primary aim of this research is to 
investigate the main factors influencing these deviations, which led to the research question: "What are 
the main factors influencing Target Off-Block Time estimation deviations during airport turnaround 
processes at Schiphol Airport?" 

The research utilizes historical data from Schiphol's DeepTurn IT department and CDM data from 
Luchtverkeerleiding Nederland (LVNL). Various statistical analyses and machine learning models, including 
Random Forest, LightGBM, and XGBoost, are employed to identify key variables affecting TOBT deviations. 
Counterfactual explanations are integrated to enhance the interpretability of these models, providing 
actionable insights into the minimal changes required to chnage the model's predictions. This approach 
aims to offer practical guidance for operational improvements and decision-making. 

The study identifies several operational and contextual factors that significantly influence TOBT deviations. 
Key variables include the duration of baggage handling and pushback events, as well as specific time-
related factors such as the time of day and month. These findings suggest that certain operational activities 
and scheduling contexts play a crucial role in predicting and managing TOBT deviations. 

To facilitate post hoc analysis for airport stakeholders, a user-friendly dashboard was developed using Flask 
and Dash frameworks. This dashboard visualizes the predictions and counterfactual insights, enabling 
stakeholders to monitor and address TOBT deviations. By integrating these predictive models and 
counterfactual explanations into a dashboard, LVNL can do post hoc analyses based on the insights that 
are created. 

While the study offers valuable insights, it is not without limitations. The quality of the data, particularly 
the noise and inaccuracies in event documentation by DeepTurn cameras created issues. Some events may 
be recorded inaccurately or not at all, affecting the reliability of the model predictions. Examples are found 
where events were started but not ended in the data. Moreover, to be able to accurately record duration 
for events as refueling and catering services, clear start and end points are missing. This leads to errors in 
interpreting the event durations. 

To enhance TOBT predictions and turnaround efficiency at Schiphol Airport, it is essential to improve data 
collection methods and redefine event protocols. Using higher frame rate cameras and advanced AI 
algorithms can significantly improve the accuracy of detecting and classifying turnaround activities. 
Ensuring full camera coverage of all critical ramp areas and performing regular maintenance and calibration 
will further enhance data quality. Finding improvements in data gathering can potentially reduce the noise 
in the data. 

Redefining event protocols involves developing standardized methods for identifying precise start and end 
points of each event. For example, fuel events should be recorded from the moment the first fuel truck 
stops in position to when the last fuel truck leaves. Similarly, pushback events should be defined more 
accurately by capturing both the start and end of the tug idle connected phase. These changes will improve 
the accuracy and reliability of predictive models for TOBT, leading to better decision-making and reduced 
turnaround delays. 
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1. Introduction 
In the highly dynamic world of aviation, minor delays can trigger a domino effect that leads to significant 
disruptions in flight schedules (Fan & Zhuang, 2020). Preventing this from happening underscores the 
importance of planned target times to closely mirror real-time conditions. An important contributor to 
these delays is the unexpected variation in aircraft turnaround times (Zhou et al., 2019). At Schiphol 
Airport, as well as at other European airports, the Airport-Collaborative Decision Making (A-CDM) system 
enhances operational planning by integrating inputs from stakeholders throughout the inbound, 
turnaround, and outbound phases of flights (EUROCONTROL, 2017). This research investigates factors that 
influence target times within the A-CDM system, specifically the off-block time. This chapter aims to 
provide a comprehensive overview of the research problem (1.1), objectives, and questions (1.2). It 
furthermore introduces the theoretical and methodological approaches used in the research (1.3). It 
explains how this research contributed to practice and academic purposes (1.4) and outlines the report’s 
structure (1.5). 

1.1 Problem Statement 
By using this data, A-CDM calculates several target times, with the Target Off-Block Time (TOBT) being one 
The Airport Collaborative Decision Making (A-CDM) system plays a crucial role in optimizing airport 
operations by calculating several target times, with the Target Off-Block Time (TOBT) being one of the key 
milestones for planning (Schiphol Airport, 2021). TOBT represents the precise moment an aircraft is fully 
prepared to leave the gate post-turnaround. However, despite frequent updates to TOBT by the A-CDM 
system, discrepancies often arise between TOBT and the Actual Off-Block Time (AOBT). These discrepancies 
can lead to challenges in runway capacity management and cause take-off delays (Strohmeier et al., 2018). 

This research aims to investigate the primary factors influencing the deviations between TOBT and AOBT, 
using data from Luchtverkeerleiding Nederland (LVNL) and the DeepTurn data at Schiphol Airport. From 
the perspective of LVNL, there has been no previous research into turnaround delays from a data-driven 
perspective. There is currently insufficient knowledge regarding the influence of various events during the 
turnaround process and the impact of different handler companies responsible for these events. 

By analyzing this data, this research seeks to identify and understand the key factors contributing to these 
deviations, thereby providing insights that can enhance the efficiency of airport operations and reduce 
take-off delays. 

1.2 Research objectives and questions 
The main objective of this research is to identify the key factors influencing the turnaround delays at 
Schiphol Airport. This is done by doing statistical tests, create machine learning models that lead to insights 
in important model predictors and generating counterfactual explanations that indicate feature 
importance. By doing so, it aims to identify factors that can be improved on, enhancing overall operational 
efficiency, and minimizing delays. Furthermore, another objective of this research is to create a post 
turnaround analysis tool. This tool can be used to create counterfactual explanations for individual 
turnarounds. By using counterfactual explanations, the minimal required change in the turnaround can be 
identified to predict a turnaround as not delayed rather than delayed. This objective translates into the 
following main research question: 

What are the main factors influencing Target Off-Block Time estimation deviations during airport 
turnaround processes at Schiphol Airport? 

To systematically address this main question, several sub-questions have been created to guide the 
investigation: 
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• What is Target Off-Block Time and how is it estimated? 

This sub-question provides foundational knowledge on TOBT and its estimation process, essential for 
understanding the context and significance of any deviations. 

• Which prediction machine learning models are currently used for Target Off-Block Time estimation? 

This sub-question explores existing machine learning models to determine their effectiveness and 
applicability, providing a basis for selecting models for TOBT estimation. 

• How can the machine learning models be used to predict Target Off-Block Time at Schiphol Airport? 

By investigating how machine learning models to predict TOBT at Schiphol can be used, the research can 
be constructed based on airport specific data and characteristics. 

• Which features are important when estimating Target Off-Block Time? 

Identifying key metrics helps to pinpoint the variables that influence TOBT estimation, allowing for a more 
targeted investigation into factors causing deviations. 

• How can machine learning explainability lead to counterfactual insights? 

Understanding ML model explainability allows for insights into why certain predictions are made, helping 
to identify and mitigate factors causing deviations in TOBT. 

• How can a dashboard be created to overview the model’s predictions? 

Developing a dashboard facilitates the visualization and monitoring of model predictions, enabling 
stakeholders to quickly identify and address deviations in TOBT. 

These sub-questions are designed to be clear, feasible, interconnected, and relevant, ensuring they 
collectively address the research question effectively. 

1.3 Theoretical and Methodological Approach 
This research will use a mixed-methods approach, integrating statistical analysis and machine learning 
techniques to evaluate the factors affecting TOBT deviations. First, a literature review will be conducted to 
understand the existing methodologies and frameworks used in TOBT estimation (Chapter 2). This will 
involve an overview of different models used for TOBT predictions and variables found to be important 
contributors to delay in previous research. Furthermore, it will involve a review of different counterfactual 
explanation methodologies and a review of methodologies that can be used for creating dashboards. 
Following this, the methodology section (Chapter 3) will outline the data collection, handling, cleaning, 
and analysis procedures. The analysis will include the development and evaluation of predictive machine 
learning models, generation of counterfactual explanations to understand model predictions, and creation 
of a user-friendly dashboard to visualize these insights. Furthermore, model feature importance and global 
counterfactual feature importance are outlined an explained. 

1.4 Contribution to Practice and Academia 
The findings of this research are expected to significantly benefit the aviation industry, particularly in 
enhancing the operational efficiency of airports by improving TOBT accuracy. For people working in 
practise, this research provides actionable insights into the factors affecting turnaround times and offers a 
predictive tool to mitigate delays (Lulli & Odoni, 2007). Furthermore, the findings are especially valuable 
for Schiphol Airport and LVNL, since the case study using Schiphol’s data directly identify key factors that 
influence turnaround delay.  
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Academically, this study contributes to the existing body of knowledge on airport operations and machine 
learning applications in aviation, offering new perspectives and methodologies for future research. 
Furthermore, no earlier research into the use of counterfactual machine learning explainability has been 
found, thereby presenting a significant research gap. 

1.5 Report structure 
This report is constructed in the following manner. After the introduction, the report continues with a 
literature review (chapter 2). In this chapter, previous research outlined based on each of the sub 
questions. Thereafter, the methodology section (chapter 3) of this research explains the way research was 
done. It primarily functions as an explanation of how data was gathered, handled, and analysed. Then, the 
results of the analysis are shown (chapter 4). These consists of statistical results, prediction models, 
counterfactual explanations, and a dashboard. Afterwards, these results are discussed (chapter 5) to be 
able to reflect on them. This research is summarized in the conclusion (chapter 6) and ends with some 
recommendations (chapter 7).  
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2. Literature review 
The literature review of this research is constructed in the following manner. To create a understanding of 
the A-CDM process and the TOBT variable, documentation as well as research into this subject is issued 
(2.1).  Secondly, previous research is called up on to understand which variables have been found 
influencing TOBT delays (2.2). Then, similar research using different delay prediction models are 
overviewed (2.3). Since this research is specifically using data from Schiphol Airport, the next sections 
explain the A-CDM specific complications at Schiphol Airport (2.4). The next sections overviews research 
into counterfactual machine learning explainability techniques (2.5). This section is part of a greater 
literature review done into this subject, which can be found in Appendix 1. Finally, the last section of this 
chapter explains previous research into using a dashboard which includes machine learning and 
explainability techniques (2.6). 

2.1 A-CDM and TOBT 
Due to the rising demand of air traffic, capacity at airports is often challenged. For these airports, A-CDM 
is key for air traffic management (Okwir et al., 2017). A-CDM aims to improve predictability of air traffic, by 
creating a collaborative environment between airport operators, aircraft operators, ground handlers, air 
traffic controllers (ATC), and the Network Manager (EUROCONTROL, 2017a). By facilitating efficient 
turnaround processes, enhancing flight predictability through real-time data exchange, and optimizing gate 
management, A-CDM improves airport operations and decreases delays while maximizing available 
capacity and resources. However, successful A-CDM applications require careful stakeholder engagement 
(IATA Airline A-CDM Coordination Group, 2018). This way of handling flights is fully implemented at 32 
European airports after being first introduced at München Airport in 2007 (EUROCONTROL, 2017a). The 
concept of A-CDM follows the Milestone Approach, in which every milestone is based on the flight process 
progression. The Milestone Approach's main goals are to improve situational awareness at all stages of the 
flight by identifying key events, defining information updates, defining data quality criteria, connecting 
arriving, and departing flights, enabling early decision-making during disruptions, and generally enhancing 
information quality (EUROCONTROL, 2017b). During the milestones, target times such as TOBT are being 
updated based on milestone achievements. For example, if an aircraft happened to arrive with a delay, 
TOBT might be extended due to shortened available time of the turnaround phase. An overview of this 
approach is found in figure 1. 

 

Figure 1: Milestone Approach (EUROCONTROL, 2017b) 
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TOBT is seen as one of the key variables. It is seen as a main input of runway capacity planning (Schiphol 
Airport, 2024). The initial TOBT is equal to the Schedule Off-Block Time (SOBT), which is based on the 
scheduled time of departure for the flight. The third milestone is the first time that the TOBT can be 
changed. This milestone is reached when the flight locates 2 hours before the Estimated Off-Block Time 
(EOBT). The network operator of the airport is informed on possible discrepancies in Actual Take-Off Time 
(ATOT) from the origin airport. This information is shared with the network operator by a Target Departure 
Planning Information-target (T-DPI-t) message. The system will then automatically calculate if the 
Estimated in Block Time (EIBT), the moment the aircraft arrives at its parking position after landing and 
taxing, and the Minimum Turnaround Time (MTTT) will take longer than the SOBT. The MTTT is determined 
based on several variables, such as aircraft type, type of stand and airline procedures. If the calculation 
exceeds the SOBT, the system automatically updates the TOBT. At milestone 4, 5 and 6, similar procedures 
take place considering automatic recalculations of the TOBT. The fourth milestone occurs by a local radar 
update, the fifth milestone occurs during the final approach and the sixth during the landing. The final 
automatic update to the TOBT occurs when milestone 7 is reached. At this point, the aircraft will be in-
blocks and ground handling commence. Milestone 8 occurs when an aircraft’s ground handling has started. 
This milestone only occurs to specific flights that did not follow a normal turnaround. This for example 
occurs when it’s the aircraft’s first flight of the day. Milestone 9 is the final confirmation of TOBT and is the 
last time TOBT changes can occur during the Milestone Approach. This time, the TOBT is not automatically 
being changed but manually by an aircraft operator or ground handler. This happens on a predetermined 
interval before the EOBT. This interval can change between airports. This update to the TOBT is manual, 
based on an estimation on the turnaround process (EUROCONTROL, 2017b). While being done by 
specialized personnel, a TOBT estimation done by human assessment can be inaccurate. This while TOBT 
is an important metric that influences A-CDM positively (Rott et al., 2023). 

2.2 Important features 
There have been multiple research projects done that investigated variables influencing TOBT delays. 
Postorino et al.'s researched (2020) the impact of disruptive events on airport airside operations, offering 
insights into mitigating operational disruptions and enhancing efficiency through detailed simulation 
modelling. They listed the most important activities during a turnaround process and divided these 
activities into sub activities. This gives insights in turnaround process activities and shows the effectiveness 
of dividing these in smaller sub activities. They found that a lack of available ground personnel has a 
correlation with average delay. Volt et al. (2023) researched the possibilities of quantification of factors 
influencing aircraft handling processes and TOBT predictions. They investigated features as number of 
passengers, number of baggage carts, (un)loading duration, (un)boarding duration and refuelling duration. 
These features were examined for over 12,000 flights that did a turnaround at Václav Have Airport Prague. 
They found significant correlations, based on its P-value, in 9 features. These were features related to the 
number of carts at unloading and loading, the duration of unloading, the loading times, the boarding times, 
and the fuelling times. This research is of use since it presents a method of measuring metrics’ correlation 
to TOBT and presents results that may be compared to this research’s results. Rebollo and Balakrishnan 
(2014) developed random forest ML model to predict root delay at multiple American airports. They found 
that delay in their model was most caused by the time-of-day, making it the most important explanatory 
variable. It indicates that time-of-day is an important feature to research since this metric can also affect 
TOBT delays in peak hours at Schiphol Airport. Using TOBT as a feature, Dalmau et al. (2019) employed 
machine learning approaches to investigate the discrepancy between ATOT and Estimated Take-Off Times 
(ETOTs). They found in their Shapley analysis that the available time for turnaround significantly impacted 
delays, with lower values indicating potential delay. Supporting this, De Falco (2023) found that available 
turnaround time was the most important value, when they created a model predicting TOBT delays and 
did a Shapley analysis. 
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Feature Paper Explanation  

Available ground 
personnel 

Postorino et al (2020) Amount of personnel available to execute ground handling during 
turnaround. 

Number of 
passengers 

Volt et al. (2023) Total count of passengers on board the aircraft, influencing 
boarding and disembarkation times as well as other turnaround 
activities. 

Number of baggage 
carts 

Volt et al. (2023) Total count of baggage carts used during loading and unloading, 
affecting turnaround times and efficiency of baggage handling. 

(Un)loading 
duration 

Volt et al. (2023) Time taken to load or unload baggage or cargo onto or off the 
aircraft, influencing overall turnaround time. 

(Un)boarding 
duration 

Volt et al. (2023) Time taken for passengers to embark or disembark from the 
aircraft, affecting overall turnaround time and efficiency of 
passenger handling. 

Refuelling duration Volt et al. (2023) Time taken to refuel the aircraft, impacting turnaround time and 
dependent on factors such as fuel capacity and refuelling 
infrastructure. 

Time-of-day Rebollo and 
Balakrishnan (2014) 
 

The specific hour of the day when the turnaround process occurs, 
which can influence various aspects of operations and delays, 
especially during peak hours. 

Available 
turnaround time 

Dalmau et al. (2019) 
De Falco et al. (2023) 

The duration of time available for completing the turnaround 
process, which significantly impacts the likelihood of delays and 
efficient turnaround operations. 

Table 1: Important features in previous research 

2.3 TOBT prediction models 
Machine learning techniques have gained significant traction in predicting flight delays, including TOBT 
predictions, due to their ability to handle complex and large datasets. Various research projects have 
explored different machine learning models to enhance the accuracy and reliability of these predictions. 

Rebollo et al. (2014) applied random forests to predict root delays, testing their model at several airports 
in the United States with forecast horizons of 2, 4, 6, and 24 hours. They found that prediction errors 
increased with the length of the forecast horizon. Khanmohammadi et al. (2014) used an Adaptive 
Network-based Fuzzy Inference System (ANFIS) to predict root delays, employing the predictions as inputs 
for a fuzzy decision-making method to sequence arrivals at JFK International Airport. Balakrishna et al. 
(2010) utilized a reinforcement learning algorithm to predict taxi-out delays. The problem was modeled as 
a Markov decision process, achieving good performance when run 15 minutes before scheduled departure 
times at JFK and Tampa Bay International Airports. Lu et al. (2016) developed a recommendation system 
using the k-Nearest Neighbor algorithm to forecast delays at airports due to propagation effects, 
highlighting its fast response time and ease of interpretation. Ganesan et al. (2010) employed approximate 
dynamic programming to predict airport taxi-out times, integrating different data sources to improve 
prediction accuracy. George and Khan (2015) developed an improved Q-learning approach to predict taxi-
out times, enhancing accuracy in dynamic and complex airport environments. 

Expanding on these findings, Gui et al. (2019) focused on predicting flight delays using neural networks and 
random forests, utilizing metrics such as time-of-day variables. They proposed a classification approach for 
predicting delays, as opposed to traditional regression methods. Dalmau et al. (2019) used Light Gradient 
Boosting Machine (LightGBM) and Artificial Neural Networks (ANN) to research the difference between 
ETOT and ATOT, showing a 30 percent improvement in Mean Absolute Error (MAE) compared to base 
models. Mamdouh et al. (2020) applied Support Vector Machine (SVM) techniques to predict required 
ground handling resources, achieving high accuracy, and recommending the exploration of other 
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supervised machine learning models for similar tasks. De Falco et al. (2023) created a probabilistic 
prediction model for TOBT using eXtreme Gradient Boosting (XGBoost) on data from four airports, 
significantly improving MAE compared to base models. Yildiz et al. (2022) introduced an innovative system 
using deep learning and computer vision to automate ground service monitoring during aircraft 
turnaround processes, improving real-time data processing and precise monitoring. Gao et al. (2015) 
employed an ANN to predict flight turnaround times at airports, achieving high predictive accuracy with a 
relative error of less than 25% in 85% of cases. 

These diverse applications of machine learning techniques demonstrate their growing importance and 
effectiveness in predicting various aspects of flight delays, including TOBT. By using historical data and 
various features, these models significantly improve the accuracy of predictions, thereby improving in 
optimizing airport operations and resource allocation. To decided which models are most applicable for 
this research, a pro-cons analysis is done. The results are found in table 2, the models are sorted from 
simple to complex. 

Paper Model Pros Cons 

Lu et al. (2016) k-Nearest 
Neighbor 

Simple to implement, fast 
response time. 

Performance can degrade with high-
dimensional data, requires a large 
amount of memory for storing data. 

George and Khan 
(2015) 

Improved Q-
Learning 

Enhanced prediction accuracy, 
well-suited for dynamic 
environments. 

Can be computationally intensive, may 
require significant training data. 

Rebollo et al. 
(2014) 

Random Forest Good performance for 
classification tasks, 
interpretable results. 

Performance decreases with longer 
forecast horizons. 

Mamdouh et al. 
(2020) 

SVM High accuracy, effective for 
classification problems. 

Can be sensitive to parameter settings, 
may not scale well with large datasets. 

Dalmau et al. 
(2019) 

LightGBM High improvement in MAE, 
efficient for large datasets. 

Complex models, require careful tuning 
and validation. 

Gui et al. (2019) Neural 
Networks 

High accuracy, handles complex 
relationships in data. 

Requires large datasets, may be prone 
to overfitting. 

Ganesan et al. 
(2010) 

Approximate 
Dynamic 
Programming 

Integrates multiple data 
sources, flexible model. 

Computationally intensive, requires 
detailed data. 

Khanmohammadi 
et al. (2014) 

ANFIS Combines fuzzy logic with 
neural networks, good for 
handling uncertainty. 

Can be complex to implement, requires 
extensive parameter tuning. 

Balakrishna et al. 
(2010) 

Reinforcement 
Learning 

Adapts to changing 
environments, effective for 
sequential decision-making. 

Requires significant computational 
resources, can be complex to 
implement. 

De Falco et al. 
(2023) 

XGBoost High predictive performance, 
robust to overfitting. 

Requires careful parameter tuning, can 
be computationally demanding. 

Yildiz et al. (2022) Deep Learning, 
Computer Vision 

Real-time data processing, 
precise monitoring, handles 
unstructured data like images. 

Very complex, requires significant 
computational resources and 
specialized knowledge to implement. 

Gao et al. (2015) ANN High predictive accuracy, good 
for capturing nonlinear 
relationships. 

Requires large datasets, can be prone 
to overfitting, and requires significant 
computational power. 

Table 2: Important models in previous research 

Random Forest, LightGBM, and XGBoost were chosen for this research due to their advantages in handling 
complex datasets and providing high predictive accuracy. Random Forest is known for its robustness and 
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ability to handle many input features without significant overfitting. Its interpretability and effectiveness 
in classification tasks make it a reliable choice for predicting root delays. LightGBM excels in handling large 
datasets with high efficiency and speed. Its capability to perform well with less training time while 
providing significant improvements in performance makes it a valuable model for predicting TOBT. XGBoost 
is chosen for its high predictive performance and robustness to overfitting. It is particularly effective in 
handling complex relationships within the data, making it suitable for TOBT prediction. These models were 
selected for their balance of accuracy, efficiency, and robustness, addressing the complexities that are 
presented in TOBT prediction. 

2.4 Implementing a model for Schiphol Airport 
The biggest airport of The Netherlands, Schiphol Airport, introduced A-CDM in 2018 (EUROCONTROL, 
2017a). As explained in 2.1, some variables of A-CDM such as the final confirmation of the TOBT can vary 
between airports (EUROCONTROL, 2017b). At Schiphol Airport, this variable is set to 10 minutes before the 
final TOBT (Schiphol Airport, 2024). Airport turnaround procedures at Schiphol Airport are being 
revolutionized by Deep Turnaround, an AI-driven solution that offers real-time insights and predictive 
capabilities (Schiphol Airport, n.d.). Deep Turnaround uses artificial intelligence (AI) image-based 
processing to identify and document more than 72 turnaround events, enabling actions to reduce 
disturbances. Its historical, real-time, and predictive data analysis enables stakeholders to optimize 
turnaround times and make well-informed decisions (Schiphol Airport, n.d.). Collaboration among 
stakeholders and resource utilization have all improved because of the Deep Turnaround implementation. 
Deep Turnaround has a positive effect on performance and predictability, as demonstrated by case studies 
from airports like Eindhoven Airport and Amsterdam Airport Schiphol (Schiphol Airport, n.d.). As a result, 
it is a useful tool for researching airport operations and improving passenger experiences. The goal of Deep 
Turnaround is to improve predictability, reduce the number and duration of delays and improve On-Time 
Performance (OTP). Two cameras are taking snapshots of the current situation every 5 seconds collecting 
data (WG CDM, 2023). This data is collected in the system of Schiphol and is used for predicting the 
Predicted End of Ground Handling Time (PEGT), which helps estimating the time a plane is ready for 
departure. By analysing the turnarounds of narrow body aircraft at Schiphol Airport in 2022, PEGT proved 
to be 70 percent right of the cases, while TOBT was only 45 percent right (WG CDM, 2023). This underlines 
the potential of this data source for this research into TOBT and AOBT misalignments. The camera setup 
and view can be seen in Appendix 2. 

2.5 Machine learning explainability 
Machine learning explainability is a crucial aspect of modern artificial intelligence, providing insights into 
how and why models make certain predictions. Explainability ensures that models are transparent, 
interpretable, and trustworthy, making them more useful in practical applications (Doshi-Velez & Kim, 
2017). It involves various techniques and methods to discover the complex decision-making processes of 
machine learning models.  

Explainability in machine learning can be categorized into two main types: intrinsic and post-hoc. Intrinsic 
explainability refers to the use of interpretable models such as linear regression, decision trees, and rule-
based systems. These models are designed to be straightforward, making it easier to understand their 
predictions directly from their structure (Rudin, 2019). Post-hoc explainability, on the other hand, applies 
to complex models like neural networks and ensemble methods, which are not naturally interpretable. 
Post-hoc techniques aim to provide explanations after the model has been trained, offering insights into 
how the model makes its decisions without altering the model itself (Lipton, 2018). Common post-hoc 
methods include feature importance scores, partial dependence plots, Local Interpretable Model-agnostic 
Explanations (LIME), and SHapley Additive exPlanations (SHAP) (Ribeiro et al., 2016; Lundberg & Lee, 2017). 
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Counterfactual explanations 
One particularly powerful post-hoc explainability method is counterfactual explanations. Counterfactual 
explanations involve generating alternative scenarios by making minimal changes to the input features to 
alter the model's prediction. These explanations help understand what needs to change for a different 
outcome to occur, thus providing actionable insights (Wachter et al., 2017). Dandle and Molnar (2023) 
describe counterfactual explanations as the smallest modification to feature values that transforms a 
prediction into a predetermined output, improving the interpretability and transparency of machine 
learning models. However, generating meaningful counterfactuals can be challenging due to the Rashomon 
effect, where multiple plausible counterfactuals exist for a single instance, potentially leading to ambiguity 
in interpretation (Molnar, 2022). Despite this, counterfactual explanations are invaluable for clearing up 
complex model behavior and improving decision-making processes (Karimi et al., 2020). Ferrario and Loi 
(2022) emphasize the importance of counterfactual explanations within the domain of eXplainable 
Artificial Intelligence (XAI), highlighting them as essential interfaces between humans and machine 
learning models. These explanations not only clarify model results but also provide practical guidance on 
how to achieve different outcomes, making them crucial for understanding feature importance in 
prediction models.  

Various methodologies have been proposed to address the challenge of creating counterfactual 
explanations in machine learning models, offering insights into why certain predictions are made and what 
changes could lead to different outcomes. In total, 62 methodologies have been considered in this review 
and are found in Appendix 1. From this list, 8 methodologies are shortlisted in this literature review due to 
their applicability. This applicability is based on their feasibility for tabulate data, their actionability, validity, 
categorical applicability, their optimization strategy, and their GitHub repository availability.  

Scoring 
In table 3, each counterfactual machine learning explainability has received a score. This score is based on 
the git quality check evaluation tool (Gcattan, n.d.). This tool evaluates the quality of Git commits and 
generates indicators based on four criteria: the percentage of commits containing prohibited words, the 
percentage of commits related to testing, the percentage of branches where the last commit is older than 
two months, and the percentage of coupled branches (determined by whether a branch is included in 
another branch's history using git branch contains). The overall score, which ranges from 0% to 100%, 
reflects the quality of the repository, with higher scores indicating better quality. 

XAI Paper Advantage Score 

CEML Artelt (2019) Offers optimization-based solutions for diverse models 23,82% 

ACTREC Ustun et al. (2019) Handles actionability constraints with integer programming 49,61% 

DACE Kanamori et al. (2020) Evaluates plausibility through novel loss function 54,92% 

MACE Karimi et al. (2020) Facilitates interpretable insights using SMT solvers 51,42% 

DICE Mothilal et al. (2020) Promotes diversity in generated counterfactuals 58,26% 

C-HVAE Pawelczyk et al. (2020) Utilizes latent space for counterfactual search 45,48% 

OCEAN Parmentier and Vidal (2021) Accounts for plausibility and actionability in tree ensembles 41,02% 

ORDCE Kanamori et al. (2021) Returns counterfactuals with ordered feature change 39,87% 
Table 3: Counterfactual XAI methodologies 

Counterfactual methodologies overview 
Artelt (2019) introduced Counterfactual Explanations via CEML, a toolbox for producing counterfactual 
explanations across various types of black-box models. Although not formally presented in a paper, CEML 
offers optimization-based solutions for different model types, contributing to the generation of insightful 
explanations in diverse scenarios by focusing on model-specific optimizations. Ustun et al. (2019) 
presented the Actionable Recourse (ACTREC) method, which addresses the problem of actionability in 

https://link.springer.com/article/10.1007/s10618-022-00831-6#ref-CR105
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counterfactual explanations by constraining generated counterfactuals to ensure that unchangeable 
features remain unchanged. The method formulates the problem through mixed-integer programming, 
incorporating constraints on actionable features to maintain valid and actionable solutions. Designed for 
tabular data and differentiable classifiers, ACTREC also handles categorical features through discretization. 

Kanamori et al. (2020) proposed the Distribution-Aware Counterfactual Explanation (DACE) method, which 
uses mixed-integer linear optimization to generate counterfactual explanations. DACE incorporates a loss 
function that combines the Mahalanobis distance and the Local Outlier Factor (LOF) to evaluate the 
possibility of counterfactuals. By minimizing distance while maintaining plausibility, DACE provides 
explanations for linear classifiers and tree ensembles, using one-hot encoding to handle categorical 
features. Karimi et al. (2020) introduced the Model-Agnostic Counterfactual Explanation (MACE) approach, 
which operates on diverse tabular data with any given distance function. MACE maps the problem into a 
sequence of satisfiability problems, expressing black-box models, distance functions, and constraints as 
logic formulas. By employing satisfiability modulo theories solvers, MACE generates counterfactual 
explanations, facilitating interpretable insights into model predictions. 

Mothilal et al. (2020) proposed Diverse Counterfactual Explanations (DICE), which solves an optimization 
problem with various constraints to ensure the feasibility and diversity of generated counterfactuals. The 
method promotes actionability and feasibility by penalizing solutions that are too similar, thereby 
encouraging diversity. DICE handles categorical features through one-hot encoding and utilizes the Adam 
optimizer for efficient computation. Pawelczyk et al. (2020) introduced the Counterfactual Conditional 
Heterogeneous Autoencoder (C-HVAE), a model-agnostic explainer for tabular data that uses an 
autoencoder to model heterogeneous data and approximate conditional likelihoods. Unlike other 
methods, C-HVAE does not require a distance function in the real input space. Instead, it relies on the 
autoencoder to measure distances in the latent space, guiding the search for counterfactuals. 

Parmentier and Vidal (2021) proposed the Optimal Counterfactual ExplAiNer (OCEAN), which focuses on 
tree ensembles and uses efficient mixed-integer programming to search for counterfactuals. OCEAN 
accounts for both plausibility and actionability, providing a robust framework for generating optimal 
counterfactual explanations. Kanamori et al. (2021) introduced the Ordered Counterfactual Explanation 
(ORDCE) method, which accounts for asymmetric interactions among features by calculating a loss function 
that depends on the order of feature changes. This method aims to return counterfactuals that not only 
specify feature values but also the sequence in which features should be altered, enhancing the practical 
relevance of the explanations. 

After overviewing various counterfactual explainability techniques, DICE has been found the most 
persuasive method for delivering useful insights into the dynamics of decision-making inside Schiphol 
Airport's operations when conducting research on the TOBT of the A-CDM process. DICE provides a 
extensive method for hsndling the variables influencing TOBT within the A-CDM framework by utilizing 
optimization techniques to guarantee the viability and diversity of generated counterfactuals. DiCE is 
known for actionability settings. This can be setting ranges or adjusting actionable features. This enables 
successful use of explainability in dashboards because it can generate valuable insights in factors that may 
be improved to reduce off block time delays. Furthermore, the research community has validated and 
adopted DICE, demonstrating its efficacy and dependability in obtaining practical insights from intricate 
operational data. This can be concluded when visiting the GitHub repository of DiCE. 

2.6 Dashboard 
In the realm of analytical dashboards, several frameworks and tools are available, each offering different 
advantages. Notable options include Django, Jupyter Notebooks, R Shiny, Flask and Dash. Django is a high-
level Python web framework that promotes fast development and clean design. It includes many built-in 
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features suitable for complex applications. However, its monolithic nature can be inconvenient for projects 
requiring more flexibility (Holovaty & Kaplan-Moss, 2005). Jupyter Notebooks provide an interactive 
environment for combining code execution, rich text, and visualizations. They are popular for exploratory 
data analysis but lack the robustness and scalability for full-scale applications (Kluyver et al., 2016). R Shiny 
is a web application framework for R, designed for interactive data visualizations and dashboards. It is 
excellent for R users but less suitable for Python developers and may not integrate well with Python-based 
tools (Chang et al., 2020). 

Flask is a Python framework that simplifies web development with its flexible and simple design. Initially 
created as an April Fool's Day joke, it gained popularity due to its simplicity and adaptability (Ronacher, 
2010). Built on Werkzeug and Jinja2, Flask offers a strong foundation for both small and complex 
applications. Its modular design allows developers to choose necessary libraries and tools, avoiding 
unnecessary work. Additionally, Flask is supported by many third-party extensions, providing 
functionalities such as database integration, form validation, and user authentication (Grinberg, 2017). 
Flask is used by major companies like Netflix and LinkedIn, showcasing its reliability (Grinberg, 2018). Dash, 
developed by Plotly in 2017, is ideal for building analytical web applications. Dash is designed to simplify 
the creation of interactive, data-driven applications, making it accessible to data scientists and analysts 
who may not have extensive web development experience (Plotly, 2017). Dash allows developers to write 
the entire application in Python, eliminating the need for proficiency in HTML, CSS, and JavaScript. This 
feature significantly lowers the barrier to entry for creating web applications with complex data 
visualizations (Belorkar et al., 2020). Dash performs well in creating dashboards and data visualization 
applications, offering highly interactive components such as dropdowns, sliders, and graphs that respond 
dynamically to user inputs. The framework integrates with Plotly's graphing libraries, enabling the creation 
of high-quality, interactive visualizations. This makes Dash particularly useful in sectors where data 
interpretation and representation are important. Companies like IBM, NVIDIA, and Tesla have utilized Dash 
for developing their data visualization interfaces (Dash, 2019). 

Combining Flask and Dash leverages the strengths of both frameworks. Flask handles backend 
infrastructure, such as user authentication, database interactions, and API integrations. On the other hand, 
Dash provides interactive data visualizations and dashboards. This combination allows developers to use 
Flask's robust backend capabilities while taking advantage of Dash's powerful data visualization tools 
(Plotly, 2019). The integration of Flask and Dash can result in a powerful web application framework that 
helps to both general web development needs and specialized data visualization requirements. This 
combination not only enhances the functionality of the application but also improves the user experience 
by offering interactive and visually appealing interfaces (Grinberg, 2018). 

For this research, the combination of Flask and Dash offers an ideal solution. Flask's simplicity and flexibility, 
paired with Dash's powerful visualization capabilities, fit the project's requirements and time constraints. 
This combination demonstrates the power of counterfactual machine learning effectively and efficiently.  
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3. Methodology 
This chapter aims to give an overview of the research approach used while creating this report. The first 

section of this chapter explains the approach of the research and its applicability to do so (3.1). The next 

section explains the origin of the data used in this research (3.2). Thereafter, the following section explains 

the processes of cleaning the data, enabling it to be analysed (3.3). Afterwards, the next section explains 

how the resulting data is analysed (3.4), using various techniques. Then, the creation of the dashboard is 

explained (3.5). This is followed by a justification of the methods that are used during the research (3.6). 

Then, the next section of this chapter explains the reliability and validity of this research (3.7). This chapter 

is ended with a section of ethical considerations of this research (3.8). 

3.1 Variable selection 
This research investigates the factors that leads to inconsistency between the TOBT and AOBT. This under-
researched topic is of interest for LVNL since deviations of this can lead to planning disruptions for air traffic 
controllers, eventually leading to capacity loss at one of busiest airports of Europe (Schiphol Group, 2023). 
The TOBT is an important term within the A-CDM concept and is used to calculate other terms within A-
CDM, such as the target take-off time (TTOT) and the target start-up approval time (TSAT). It is of interest 
to the company to understand how independent variables are influencing the variations between TOBT 
and AOBT. For this reason, independent variables are researched statistically. Furthermore, prediction 
models are created and evaluated to be able to predict the unalignments between TOBT and AOBT. To get 
a greater understanding of factors influencing the misalignment, counterfactual explainability is utilized to 
investigate the models’ feature importance. The following independent variables are researched (table 4). 

Independent variable Explanation Type of variable 

Bax Events Duration of baggage handling events Continuous numeric  

Catering Events Duration of catering handling events Continuous numeric  

Line Maintenance Events Duration of maintenance handling events Continuous numeric  

Water or Toilet Events Duration of lavatory handling events Continuous numeric  

Pushback Events Duration of pushback handling events Continuous numeric  

Fuel Events Duration of fuelling handling events Continuous numeric  

Pax Events Duration of passenger handling events Continuous numeric  

Main Handler Responsible for main handling during turnaround Categorical 

Apron Handler Responsible for apron handling during turnaround Categorical 

Baggage Handler Responsible for baggage handling during turnaround Categorical 

Clean Handler Responsible for clean handling during turnaround Categorical 

Food Handler Responsible for catering handling during turnaround Categorical 

Freight Handler Responsible for freight handling during turnaround Categorical 

Fuel Handler Responsible for fuel handling during turnaround Categorical 

Pax Handler Responsible for passenger handling during turnaround Categorical 

Tec Handler Responsible for technical handling during turnaround Categorical 

Day Monday, Tuesday, Wednesday, etc. Categorical 

Month  November, December, January, or February Categorical 

Hour  The hour the turnaround was completed (10:15 = 10) Categorical 

Alliance Airline’s alliance (Star Alliance, Sky Team, Oneworld) Categorical 

Carrier Type Full-service carrier, low-cost carrier, charter Categorical 

Capacity Number of turnarounds completed in the hour Discrete numeric  

Table 4: Independent variables 

3.2 Data collection 
To be able to do research, data is required to investigate feature influence, create a machine learning 
model, and research feature importance of the model by counterfactual explainability. These research 
techniques require merely quantitative data. For this research, multiple data sources are needed. First, 
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historic data of the turnaround processes is needed. This data is received from the DeepTurn IT department 
of Schiphol. As more in depth explained in chapter 2, DeepTurn is an AI image recognition technique using 
cameras that was introduced at Schiphol in 2021 (Schiphol Airport, n.d). The department of Schiphol 
shared two types of data, CDM-data, and event-data. The CDM data consist of 11 PARQUET files and 
included information about the aircraft that were captured by the DeepTurn cameras during their 
turnaround. The event-data consists of 579 PARQUET files which includes of information of every of the 72 
specified events during the turnaround captured by the DeepTurn cameras. These events are documented 
with timestamps of when they occurred. All these files consist of a unique ID which can be used to identify 
events that are part of the same turnaround and enables the two different types of data to be linked 
together. 

Although the DeepTurn data supplies a lot of valuable features, a key variable is missing, TOBT. Since this 
variable is mandatory for this research, historic CDM data from LVNL, which includes TOBT, is gathered. 
Since this database uses a different key to identify separate turnarounds, the TOBT information could not 
directly be merged to the data provided by Schiphol. Therefore, outbound flight data is used, which serves 
as intermediate data because of its corresponding features. This data is also gathered from the databases 
of LVNL.  

3.3 Data cleaning 
Since the gathered data originates from different data managements systems, the first step of cleaning 
consists of creating equivalent data structures. This required pivoting the events data so that every 
turnaround had its own datapoint, with each of the events as features including a value of time that had 
passed to complete that event in seconds. Since the data from Schiphol consists of event and CDM data 
with the same keys, this data can be merged. The same applies to LVNL’s CDM-data and outbound flight 
data. Due to the lack of matching keys in LVNL’s and Schiphol’s data, the resulting data frames are merged 
by using unique aircraft registrations within a specific day. If an aircraft registration occurs multiple times 
per day, the AOBT of each data source is compared and the closest datapoint is kept. The AOBT in both 
data sources usual differs a couple minutes. 

For this research, important independent variables to be studied are the handler companies. These 
variables are important because LVNL is interested in gaining insight into them. Handler information was 
not included in the data until 18 November 2023. Therefore, all turnarounds prior to this date are excluded 
from the data. Furthermore, due to the different turnaround nature of cargo and passenger flights, all 
cargo turnarounds are dropped. Finally, all long-haul flights are also removed from the data. These flights 
are also of a different nature to short-haul flights. They are often dependent on short-haul flights due to 
the hub and spoke network of Schiphol Airport and therefore often have delays that cannot be explained 
by these data. 

As the 72 turnaround events are too large to be used for a machine learning model and often not all sub-
events are captured in the data, the events are filtered into events as shown in Table 6. The events are 
grouped based on the DeepTurn event documentation (Schiphol DeepTurn department, 2023). This 
filtering was necessary because DeepTurn's event data does not actually record events and their durations, 
but only events that occur at a date and time. This often resulted in noise in the data. A sub-event captured 
by the DeepTurn cameras often did not necessarily lead to that event occurring. For example, certain 
vehicles (such as de-icing vehicles, fuel tankers or catering vehicles) would often appear and be recorded 
by the cameras even though they did not cause the event for which they were intended. This led to the 
following definitions created to document the events shown in Table 6. Each event is calculated using the 
first completed sub-event and the last completed sub-event. In this way the duration of the event is 
retained in the data. This duration is then expressed as a percentage of the total turnaround time. 
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Grouped events Sub events 

Fuel events First fuel truck stops in position; Last fuel truck moves out of position 

Pushback event Tug idle connected starts; Aircraft moves out of position 

Bax events First belt loader stops in position; Last belt loader moves out of position 

De-ice events De-icing wing starts, stops;  

Line maintenance events First/Last oil check truck appears, disappears; Power connects, disconnects 

Water or toilet events First/Last water or toilet truck appears, disappears 

Catering events First catering truck completes ascent, completes descent, 

Pax events First pax bridge connects, last pax bridge stops in park position; First ambulift appears, last 
ambulift disappears; Rear/front pax stairs disconnects, connects; Ambulift in/out of position; Pigs 
connected, disconnected, First/Last pax door open, closed; Pax disembark/board starts, stops; 
First/Last pax door front left/right/rear left/rear right open, closed 

Table 5: Grouped DeepTurn events 

The final step in the data cleaning process is to create new features. Firstly, time of day is used as a feature. 
Secondly, some categorical features are made up of values that appear too rarely in the data. Airlines are 
grouped into alliances as they often share handlers. They are also grouped as either low-cost carriers, full-
service carriers, or charter flights. Finally, the target variable is defined and constructed. Since this research 
aims to investigate the difference between AOBT and TOBT, a target variable is created called Delta Off-
Block Time (DOBT), which is the difference between the two. The TOBT used in this research is the one that 
is defined as soon as the turnarounds begin. 

3.4 Data analysis 
The data analysis in this research consists of three parts: a statistical analysis (3.4.1), machine learning 
algorithms (3.4.2), and a counterfactual machine learning explainability analysis (3.4.3).  

3.4.1 Statistical tests 
The statistical analysis investigates the correlation between independent variables and the dependent 
variable of this research, which is DOBT. The statistical analysis approach differentiates between the 
categorical and the numerical variables. 

To analyse the categorical variables, the study employs the ANalysis OF VAriance (ANOVA) test and the 
Kruskal-Wallis test, depending on whether the assumptions of ANOVA are met. The ANOVA test is used to 
determine if there are any statistically significant differences between the means of three or more 
independent groups. It assumes that the data is normally distributed and that variances are homogeneous 
across groups (Schmider et al., 2010). The normality of each feature’s distribution is checked visually using 
Q-Q plots and histogram plots of the residuals, and statistically by conducting the Shapiro-Wilk test. The 
Shapiro-Wilk test assesses whether the data is drawn from a normally distributed population, with a p-
value less than 0.05 indicating a deviation from normality (Razali & Wah, 2011). 

Homogeneity of variance is evaluated using Bartlett’s test and Levene’s test. Bartlett’s test is sensitive to 
departures from normality, while Levene’s test is more robust for non-normal distributions (Lim & Loh, 
1996). Both tests assess whether variances are equal across groups, with a significant p-value indicating 
unequal variances. If the assumptions of normality and homogeneity of variance are met, ANOVA is 
performed to compare the group means using the F-statistic, which measures the ratio of variance 
between the groups to the variance within the groups (Feir-Walsh & Toothaker, 1974). 

When the assumptions of ANOVA are not met, the Kruskal-Wallis test, a non-parametric alternative, is 
used. The Kruskal-Wallis test does not assume normal distribution and is used to determine if there are 
statistically significant differences between the medians of three or more independent groups (McKight & 
Najab, 2010). This test ranks all the data points and evaluates whether the ranks differ significantly between 
groups, providing a method for analysing non-normally distributed data. 
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For numerical variables, the normality of each feature’s distribution is assessed both visually, using Q-Q 
plots and histogram plots of the residuals, and statistically, using the Shapiro-Wilk test (Ghasemi & 
Zahediasl, 2012). Variance homogeneity is then evaluated visually using residual vs. fitted values plots and 
statistically using the Breusch-Pagan test, which tests for heteroscedasticity (Breusch & Pagan, 1979). A 
significant Breusch-Pagan test indicates heteroscedasticity, or non-constant variance, in the data. 

Based on the outcomes of these tests, either Pearson or Spearman correlation coefficients are calculated 
to measure the strength and direction of the relationship between numerical features and the dependent 
variable, DOBT. Pearson correlation is used for normally distributed data and measures linear relationships, 
while Spearman correlation is used for non-normally distributed data and measures monotonic 
relationships (Hauke & Kossowski, 2011). 

Finally, linear regression analysis is conducted to model the relationship between the dependent variable 
and one or more independent variables. Linear regression assumes linearity, independence, 
homoscedasticity, and normally distributed residuals. The regression equation models the dependent 
variable as a linear combination of the independent variables plus an error term (Montgomery et al., 2012). 
This analysis provides insights into the extent to which each independent variable predicts the dependent 
variable. 

3.4.2 Machine learning algorithms 
In this research, machine learning models were developed and optimized using pipelines to integrate data 
preprocessing steps and model training efficiently. This approach ensures that functions such as standard 
scaling and one-hot encoding are consistently applied across all models while preserving the attributes 
needed for counterfactual explainability analysis. This section overviews feature reduction techniques 
(3.4.2.1), machine learning models and the hyperparameters that are tuned (3.4.2.2), performance metrics 
that are used (3.4.2.3) and model feature importance (3.4.2.4) 

3.4.2.1 Feature reduction techniques 
In this research, two feature reduction techniques are used, Variance Inflation Factor (VIF) and Principal 
Component Analysis (PCA). VIF is a measure used to detect multicollinearity among the independent 
variables in a regression model. High VIF values indicate high correlation between variables, which can 
inflate the variance of regression coefficients and make them unstable (O’Brien, 2007). The VIF is calculated 
using the formula (equation 1): 

𝑉𝐼𝐹𝑖 =
1

1 − 𝑅𝑖
2 

 

Eq. 1 

In this, 𝑅𝑖
2 is the coefficient of determination of the regression of the 𝑖-th independent variable on all the 

other independent variables. A VIF value greater than 10 is often used as a rule of thumb to indicate 
significant multicollinearity, so this is also the case for this research (Kutner et al., 2004). In this study, 
dummy variables were created for categorical columns, and features with VIF values greater than 10 were 
excluded from the model to reduce multicollinearity. 

PCA is a dimensionality reduction technique that transforms a large set of variables into a smaller set of 
uncorrelated variables called principal components. These components capture the maximum variance in 
the data. The steps involved in PCA include: 

1. Standardization: Scaling the data so that each feature has a mean of zero and a standard deviation 
of one (Jolliffe, 2002). 

2. Covariance Matrix Computation: Calculating the covariance matrix to understand the variance and 
covariance between different features (Jolliffe, 2002). 
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3. Eigen Decomposition: Computing eigenvalues and eigenvectors from the covariance matrix to 
identify the principal components (Jolliffe, 2002). 

4. Projection: Projecting the data onto the principal components to reduce dimensionality (Jolliffe, 
2002). 

In this research, PCA was used to retain features that accounted for 95% of the variance. This threshold 
ensured that the most informative features were kept, avoiding overfitting while maintaining model 
interpretability. The results are found in figure, 2. Due to little variation in explainability between 
components, no feature was reduced for this research. 

 

Figure 2: PCA results 

3.4.2.2 Machine learning models and hyperparameters 
Based on previous research, three machine learning models are created. These are Random Forest, 
LightGBM and XGBoosting. Furthermore, a base model is created using logistic regression to have a 
comparable model. The models are created by splitting test and train data and doing hyperparameter 
tuning for the predictors. To be able to work with counterfactuals, the target variable of DOBT is 
transformed in a binary classification. For this, a threshold is set at 300 seconds, meaning a DOBT of less 
than 300 seconds is the desired class and a DOBT that exceeds this threshold is considered undesired. After 
creating the four models, a fifth model is created which is an ensembled model. Its operation and the 
hyperparameters tuned for this study are described below. 

Logistic Regression is a linear model used for binary classification problems. It estimates the probability 
that a given input belongs to a certain class (Hosmer et al., 2013). The logistic function is defined as 
(equation 2): 

𝑃(𝑌 = 1 ∣ X ) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋1+⋯+𝛽𝑛𝑋𝑛)
 

 
Eq. 2 

Hyperparameters tuned include: 

• C: The inverse of regularization strength, smaller values specify stronger regularization, which helps 
prevent overfitting by penalizing large coefficients (Hosmer et al., 2013). 

• Solver: The algorithm used in the optimization problem. 'liblinear' is suitable for small datasets or 
binary classification (Peduzzi et al., 1996). 
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Random Forest is an ensemble learning method that constructs multiple decision trees during training and 
outputs the mode of the classes (classification) or mean prediction (regression) of the individual trees. For 
this research, it’s designed to solve a classification problem. The general principle uses Bootstrap 
aggregation (bagging), random subsets of the training set are sampled with replacement to train each tree, 
and random feature selection, each node in a tree considers a random subset of features to split on, 
reducing correlation between trees and improving model robustness (Liaw & Wiener, 2002). Key 
hyperparameters tuned in this research are: 

• bootstrap: Whether bootstrap samples are used when building trees, which helps in reducing 
variance (Breiman, 2001). 

• max_depth: Maximum depth of the tree; controls overfitting by limiting the number of splits in 
each tree (Liaw & Wiener, 2002). 

• min_samples_split: Minimum number of samples required to split an internal node, helping to 
prevent overfitting (Liaw & Wiener, 2002). 

• min_samples_leaf: Minimum number of samples required to be at a leaf node, ensuring each leaf 
has enough samples (Liaw & Wiener, 2002). 

• n_estimators: Number of trees in the forest, with more trees generally leading to better 
performance but increased computational cost (Liaw & Wiener, 2002). 

LightGBM is a gradient boosting framework that uses tree-based learning algorithms. Gradient boosting 
involves model building, while adding predictors, each correcting its predecessor's errors, and 
optimization, minimizing a differentiable loss function using gradient descent (Ke et al., 2017). Key 
hyperparameters include: 

• max_depth: Maximum depth of the tree, controlling the complexity of the model (Ke et al., 2017). 

• min_child_samples: Minimum number of data points required in a child (leaf) node, which helps 
in controlling overfitting (Ke et al., 2017). 

• n_estimators: Number of boosting iterations, balancing bias and variance (Ke et al., 2017). 

• num_leaves: Maximum number of leaves in one tree, balancing model complexity and 
performance (Ke et al., 2017). 

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible, and 
portable. Key principles include regularized learning objective, incorporates regularization to prevent 
overfitting, shrinking, reduces the influence of each tree to allow subsequent trees to correct errors more 
effectively, and column sampling, improves computation speed and model robustness (Chen & Guestrin, 
2016). Key hyperparameters include: 

• colsample_bytree: Fraction of features to be used by each tree, which helps in preventing 
overfitting (Chen & Guestrin, 2016). 

• learning_rate: Step size shrinkage used to prevent overfitting by lowering the influence of each 
individual tree (Chen & Guestrin, 2016). 

• max_depth: Maximum depth of a tree, controlling the model's complexity (Chen & Guestrin, 
2016). 

• n_estimators: Number of trees, balancing bias and variance (Chen & Guestrin, 2016). 

• subsample: Fraction of samples used for fitting individual base learners, preventing overfitting 
(Chen & Guestrin, 2016). 

An ensemble model integrates multiple models to improve performance. In this research, the ensemble 
method used voting to combine the predictions of Random Forest, LightGBM, XGBoost, and Logistic 
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Regression classifiers. This approach leverages the strengths of each algorithm to achieve a more balanced 
and robust predictive capability (Sagi & Rokach, 2018). 

3.4.2.3 Performance metrics 
Performance metrics are essential for evaluating the effectiveness of the machine learning models. It 
enables to compare models and draw conclusion based on the reliability of the models. The following 
metrics were used: 

• Accuracy: The proportion of true results (both true positives and true negatives) among the total 
number of cases. It is a measure of the overall correctness of the model (Sokolova & Lapalme, 
2009). 

• Precision: The ratio of true positives to the sum of true positives and false positives. It indicates 
the accuracy of the positive predictions and is crucial when the cost of false positives is high 
(Powers, 2011). 

• Recall: The ratio of true positives to the sum of true positives and false negatives. It measures the 
ability of the model to identify all relevant instances and is important when the cost of false 
negatives is high (Sokolova & Lapalme, 2009). 

• F1 Score: The harmonic mean of precision and recall. It provides a single metric that balances both 
concerns, especially useful when the class distribution is imbalanced (Powers, 2011). 

• AUC (Area Under the ROC Curve): The area under the Receiver Operating Characteristic curve, 
which measures the model's ability to distinguish between classes. Higher values indicate better 
performance, as it considers the trade-off between true positive rate and false positive rate 
(Fawcett, 2006). 

These selected metrics offer balanced evaluation of model performance, addressing different aspects such 
as overall accuracy, precision, recall, balance in imbalanced datasets, and discriminative ability across 
thresholds. This combination ensures that the models are fully assessed and that the results are reliable 
and interpretable for various use cases. 

3.4.2.4 Model feature importance 
Feature importance is a critical aspect of interpreting machine learning models, especially in understanding 
which features most significantly impact predictions. For logistic regression, feature importance can be 
determined by examining the magnitude of the coefficients assigned to each feature, with larger absolute 
values indicating greater importance. For tree-based models like Random Forest, LightGBM, and XGBoost, 
feature importance is determined by how much each feature contributes to reducing the impurity (Gini 
impurity or entropy) in the trees (Breiman, 2001; Ke et al., 2017; Chen & Guestrin, 2016). This information 
is valuable for identifying the key factors influencing TOBT predictions. By analyzing feature importance, 
stakeholders can gain insights into which variables are most impactful, enabling more informed decision-
making and optimization of operations at Schiphol Airport. 

3.4.3 Counterfactuals 
Furthermore, the data is analysed using counterfactual machine learning. Based on the outcomes of the 
literature review, the DiCE ML methodology is used for this analysis. Counterfactual explanations are 
hypothetical scenarios that alter certain features of an instance to achieve a desired outcome while keeping 
other features constant. This approach provides insights into how changes in specific features can impact 
the prediction of the model. 

Counterfactual explanations aim to answer "what if" questions, providing examples that show how a 
different outcome could be achieved by changing certain features of the input data. For instance, in the 
context of this research, a counterfactual explanation might suggest that a delay could be avoided if the 
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refuelling events were reduced by a certain percentage. The process involves generating counterfactuals, 
creating alternative scenarios where the model's prediction changes. The DiCE ML framework generates 
multiple counterfactual examples to offer diverse explanations. Each counterfactual instance is generated 
by changing one or more features of the original instance (Mothilal et al., 2020). To prevent unrealistic 
results, constraints are applied. In this research, numerical features are allowed to change only within 
specified ranges. Specifically, event times can decrease by a maximum of 25 percent to ensure the 
generated counterfactuals are plausible and actionable. 

Local feature importance refers to the impact of features on the prediction of a single instance. By analysing 
counterfactuals for specific instances, we can determine which features need to change to chnage the 
prediction. This helps in understanding the influence of each feature on individual predictions and provides 
actionable insights for specific scenarios (Mothilal et al., 2020). The local feature importance of a single 
datapoint is integrated in the dashboard created during this research. 

Global feature importance assesses the impact of features across all data points in the dataset. This is 
achieved by aggregating the feature importance from all counterfactual instances to identify the most 
influential features globally. This is done by generating ten counterfactual explanations for each datapoint 
in the train data. In this study, the results of the global feature importance are plotted in histograms. These 
histograms show the distribution of feature importance scores, enabling comparisons between different 
models (Mothilal et al., 2020). 

3.5 Dashboard 
The results of the counterfactual instances are implemented in a dashboard using a combination of Flask 
and Dash. Flask is used to create a backend API for handling predictions and generating counterfactuals, 
while Dash is used to create an interactive dashboard for users to input data and visualize results. 

Flask is a lightweight web framework for Python, suitable for creating APIs and handling web requests 
(Grinberg, 2018). In this project, Flask is used to serve a machine learning model and handle prediction 
and counterfactual generation requests. The Flask application includes multiple API endpoints. The predict 
endpoint accepts a JSON input, preprocesses it, and returns a prediction. The counterfactuals endpoint 
accepts a JSON input, preprocesses it, and returns counterfactual explanations. The expected-types 
endpoint returns the expected data types for input features. This is important to correctly generate 
counterfactual explanations. Dice ML is used to generate counterfactual explanations, resulting in 
alternative scenarios that could lead to a different prediction (Mothilal, Sharma, & Tan, 2020). This is 
particularly useful for understanding model decisions and exploring how the smallest changes in input 
features affect the output. This means that for this dashboard, the ability is created to investigate 
counterfactual explicabilities for delayed individual delayed turnarounds. 

Dash is a framework for building analytical web applications using Python (Plotly, 2021). It allows for the 
creation of interactive, web-based dashboards. The layout of the Dash application is designed to be user-
friendly and intuitive, focusing on simplicity. It includes a dropdown menu for selecting flight IDs, input 
field for entering turnaround time, and a button for triggering predictions and counterfactual generation. 
Additionally, it features tables for displaying original data points and counterfactuals explanations. When 
a user selects a flight ID and enters a turnaround time, the data is sent to the Flask API for prediction and 
counterfactual generation. The results are then displayed in the dashboard. Dash uses callbacks to update 
components dynamically based on user interactions. This ensures that the dashboard remains responsive 
and interactive. Numerical features in the data are converted from percentages to actual times based on 
the entered turnaround time. This transformation helps in understanding the impact of different events on 
the turnaround time more clearly. 
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Integrating Flask and Dash allows for a powerful combination where Flask handles the backend logic and 
Dash provides a user-friendly frontend. User inputs in the Dash frontend are sent as JSON requests to the 
Flask API. Flask processes these inputs, performs predictions, or generates counterfactuals, and returns 
the results. Dash receives the results and updates the dashboard components. Both Flask and Dash are run 
as separate servers. Flask serves the API endpoints, while Dash runs the interactive dashboard. This 
separation ensures that the backend logic is sperate from the frontend, making the application modular 
and easier to maintain. The integration also allows for efficient handling of machine learning tasks and the 
presentation of results in an accessible manner. By using Dash, the results of the predictions and 
counterfactuals can be easily interpreted by users without requiring deep technical knowledge. 

3.6  Reliability and validity 
For this research on the factors influencing TOBT deviations at Schiphol Airport, several measures have 
been taken to ensure reliability. Firstly, the data collection process was consistent and used reliable sources, 
such as DeepTurn data from Schiphol Airport and historic A-CDM data from LVNL. Consistency in data 
collection methods ensures that the data is dependable and replicable (Lewis-Beck et al., 2003). 

Secondly, the data cleaning and processing steps were standardized to handle raw data from different 
sources. This process included merging data based on unique identifiers, filtering out irrelevant data, and 
creating equivalent data structures. By applying consistent data cleaning techniques, the research 
minimizes the chances of introducing biases or errors, thereby enhancing the reliability of the results (Van 
den Broeck et al., 2005). 

Thirdly, established statistical methods, such as ANOVA, Kruskal-Wallis, Shapiro-Wilk, Bartlett’s, and 
Levene’s tests, were used. These tests were chosen based on the nature of the data and the research 
objectives, ensuring that the results are robust and reproducible (Field, 2018). Additionally, to ensure the 
validity of these statistical tests, assumptions were rigorously tested. For example, normality assumptions 
for parametric tests were assessed using the Shapiro-Wilk test, and homogeneity of variances was 
evaluated using Levene’s and Bartlett’s tests (Bhaumik & Dey, 2022). Where assumptions were violated, 
appropriate non-parametric tests, such as the Kruskal-Wallis test, were employed to ensure the robustness 
of the findings. 

Fourthly, the machine learning models used in this research, including Random Forest, LightGBM, XGBoost, 
and logistic regression, are well-documented and widely used in similar research contexts. The use of these 
models, combined with hyperparameter tuning and cross-validation, ensures that the predictions are 
reliable and generalizable. Model assumptions were tested using feature importance plots and VIF for 
multicollinearity to confirm that the models are well-specified (Bhaumik & Dey, 2022). The ensemble 
model further enhances reliability by leveraging the strengths of individual models (Breiman, 2001; 
Friedman, 2001; Chen & Guestrin, 2016; Ke et al., 2017). 

Lastly, the DiCE methodology was selected for its ability to produce diverse and actionable insights. By 
setting constraints on counterfactuals, such as allowing event times to decrease by a range, the research 
ensures that the generated explanations are realistic and relevant, thereby increasing the reliability of the 
insights derived from the models (Mothilal et al., 2020). 

This research addresses several aspects of validity to ensure that the findings are credible and applicable. 
Internal validity is achieved by carefully designing the research methodology to eliminate misleading 
variables and biases. The selection of independent variables was based on a literature review and expert 
input, ensuring that all relevant factors influencing TOBT are considered. Additionally, the use of 
appropriate statistical tests and machine learning models enhances the internal validity of the research 
(Shadish et al., 2002). 
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External validity concerns the generalizability of the findings. By using data from a major international 
airport (Schiphol Airport) and using widely recognized methodologies, the research findings are likely to 
be applicable to other similar airport environments. The fact that plenty of other airports also implemented 
A-CDM supports this claim. The generalizability is further supported by the inclusion of a diverse set of 
variables, covering different aspects of the turnaround process (Steckler & McLeroy, 2008). 

Construct validity is ensured by accurately defining and measuring the constructs of interest, such as TOBT, 
AOBT, and the various independent variables. The use of well-defined metrics and consistent data 
collection methods ensures that the constructs are accurately represented in the data. The transformation 
of the target variable (DOBT) into a binary classification is based on a clear threshold, further supporting 
construct validity (Trochim & Donnelly, 2008). 

Content validity is maintained through a comprehensive literature review and expert consultations, 
ensuring that the research covers all relevant aspects of TOBT estimation and deviations. The selection of 
independent variables is based on previous research and industry practices, using all features of interest 
that are influencing TOBT (Haynes et al., 1995). 

Face validity is achieved by presenting the research methodology and findings to stakeholders and experts 
in the field. The involvement of LVNL and the use of DeepTurn data provide practical relevance and 
credibility to the research. Validation through expert feedback ensures that the results are found to be 
valid and relevant by people working in the field of aviation (Nunnally & Bernstein, 1994). 

3.7 Ethical considerations 
The research relies on historical data from Schiphol Airport and LVNL. Ensuring the privacy and 
confidentiality of this data is of great importance. All data used was anonymous to prevent the 
identification of individuals involved in the data set. The data was presented using protected and secured 
by being sent through a Windows Azure Private Link. For the Schiphol data, no Non-Disclosure Agreement 
(NDA) was required due to the agreements between LVNL and Schiphol Group of shared data. 

Although the research did not involve direct interaction with individuals, informed consent principles were 
applied to the use of data. This included clear communication about the objectives of the research, how 
the data would be used, and the measures in place to protect the data (Smith, 2020). This involved weekly 
meetings with stakeholders wherein progression and data handling were discussed. 

Detailed documentation of all processes, from data collection and cleaning to model development and 
validation, was maintained. This documentation ensures that the research can be audited and replicated 
by other researchers, enhancing the reliability and credibility of the findings. This is achieved by creating 
an in-depth methodology, but also by documenting the programming code extensively, so that it could 
easily be replicated. Additionally, any potential conflicts of interest were disclosed, and the research was 
conducted independently without undue influence from external stakeholders (Jones, 2019). 

The deployment of machine learning models raises ethical questions about bias, fairness, and the impact 
of decisions based on model predictions. In this research, efforts were made to ensure that the models 
used were as unbiased and fair as possible, by testing for biases, balancing different model performance 
metrics and implementing techniques to mitigate any identified biases, such as VIF. Furthermore, the 
explainability of the models was prioritizedto facilitate the understanding and trust of users (Molnar, 2020). 

This study, focusing on the optimization of airport operations, has potential environmental and social 
benefits, such as reducing delays and improving operational efficiency, which can lead to lower emissions 
and better service for passengers. The research was designed to contribute positively to these areas, 
aligning with broader societal goals of sustainability and improved quality of life (United Nations, 2015).  
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4. Results 
In this chapter, the results of this research are presented. These results are a direct result of the described 
objectives, built on the analysed prior done research and created based on the explained methodology. 
The results are divided over four sections. In the first section, the statistical results are shown between the 
different independent variables and the target variable, DOBT (4.1). Thereafter, the prediction model 
outcomes are explained (4.2). Furthermore, the counterfactual machine learning explainability results are 
shown (4.3). To conclude, the last section involves the outcomes of the dashboard (4.4) 

4.1 Statistical analysis 
In the statistical analysis section, all results considering the correlation between the individual independent 
variables and DOBT are overviewed. Since the nature of researching different kind of variables are different, 
as also explained in the methodology, this requires different tests. Therefore, there is a separate section 
for continuous numeric features (4.1.1) and for the remaining features (4.1.2). 

4.1.1 Numeric features 
Table 6 presents the results of various statistical analyses on different event features to assess normality, 
heteroscedasticity, correlation, and regression significance. These analyses provide insights into the data 
characteristics and relationships between features and DOBT. The individual distributions of the numerical 
features are found in Appendix 3 & 4. 

Feature                    S-W 
p-value 

Normality B-P 
p-value 

Heterosce
dasticity 

Correlation 
Coeff 

Spearman 
p-value 

Correlation 
Significance 

Bax Events 2.1811e-39 ✘ 1.9882e-01 ✘ 4.2104e-02 1.1360e-06 ✔ 

Catering Events 5.2198e-32 ✘ 8.8339e-03 ✔ -4.6233e-02 3.9686e-05 ✔ 

Line Maintenance Events 5.9686e-40 ✘ 2.4774e-05 ✔ 6.8860e-02 1.3265e-16 ✔ 

Water or Toilet Events 5.2063e-24 ✘ 6.6336e-01 ✘ -2.3249e-02 1.1121e-01 ✘ 

Pushback Events 9.9754e-39 ✘ 1.5172e-24 ✔ 2.0734e-01 9.135e-140 ✔ 

Fuel Events 3.4332e-39 ✘ 1.1697e-01 ✘ 5.1864e-02 2.4386e-09 ✔ 

Pax Events 1.2595e-40 ✘ 2.7737e-04 ✔ 6.5336e-02 2.9259e-16 ✔ 

Feature                    LR Intercept LR Coeff R-squared MSE F-statistic Regression Significance 

Bax Events 2.4972e+02 1.168e-02 1.8159e-03 6.585e+04 2.4286e+01 ✔ 

Catering Events 2.9754e+02 -4.59e-02 2.1454e-03 6.633e+04 1.6972e+01 ✔ 

Line Maintenance Events 2.3969e+02 7.497e-03 2.8667e-03 6.559e+04 4.1387e+01 ✔ 

Water or Toilet Events 2.7942e+02 -4.22e-02 5.6572e-04 6.460e+04 2.6576e+00 ✘ 

Pushback Events 2.4914e+02 3.486e-02 9.6047e-03 6.516e+04 1.3981e+02 ✔ 

Fuel Events 2.3382e+02 2.855e-02 1.9802e-03 6.535e+04 2.6220e+01 ✔ 

Pax Events 2.4509e+02 6.096e-03 1.7688e-03 6.567e+04 2.7696e+01 ✔ 

Table 6: Correlation and linear regression results between independent numeric variables and the dependent variable 

The Shapiro-Wilk test indicates that none of the features follow a normal distribution, suggesting the need 
for non-parametric tests or data transformations for further analysis. Normality was also checked visually. 
Heteroscedasticity was assessed using the Breusch-Pagan test. Features like Catering Events, Line 
Maintenance Events, Pushback Events, and Pax Events showed heteroscedasticity, while Bax Events, Water 
or Toilet Events, and Fuel Events show homoscedasticity. Heteroscedasticity implies varying variance in the 
dependent variable across values, affecting regression validity. Visual inspection of residual plots for 
heteroscedasticity is provided in Appendix 5. Spearman's rank correlation coefficient was used to evaluate 
the correlation between event occurrences and DOBT. Most features show significant but weak 
correlations, except Water or Toilet Events, which does not show a significant correlation.  
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Linear regression analysis explored the relationship between event occurrences and DOBT. Despite some 
violations of assumptions, using logistic regression can still provide valuable insights into the relationships 
between predictors and the binary outcome. The significant p-values and F-statistics suggest that the 
model identifies important predictors. While most features resulted in statistically significant models, the 
low R-squared values indicate that the models explain only a small fraction of the variance, suggesting the 
presence of additional influencing factors. An exception is Water or Toilet Events, which does not 
significantly explain the variance. Residuals versus fitted values and linear regression plots are found in 
Appendices 6 and 7. 

In summary, none of the event features follow a normal distribution, several features exhibit 
heteroscedasticity, and most show weak but significant correlations with DOBT. The regression models, 
although statistically significant, have low explanatory power, indicating the need to consider additional 
factors. 

4.1.2 Categorical features 
Table 7 presents the results of several statistical tests conducted on various event features to assess 
normality, homogeneity of variances, and overall group differences. The Shapiro-Wilk test was performed 
to evaluate the normality of the data in each column. The results show that all columns have p-values 
significantly less than 0.05, indicating that none of the columns follow a normal distribution. 

Feature           S-W p-
value 

Normality 
residuals 

Bartlett 
p-value 

Bartlett 
Result 

Levene 
p-value 

Levene 
Result 

K-W p-value K-W 
Result 

Main handler     2.28e-10 ✘ 3.12e-03 ✘ 1.62e-04 ✘ 4.47e-57 ✔ 

Apron handler            6.69e-10 ✘ 4.09e-03 ✘ 3.67e-04 ✘ 7.82e-55 ✔ 

Baggage handler              6.58e-09 ✘ 3.08e-03 ✘ 1.62e-04 ✘ 3.67e-57 ✔ 

Clean handler            1.27e-10 ✘ 7.21e-02 ✔ 9.55e-02 ✔ 5.14e-15 ✔ 

Food handler             1.36e-10 ✘ 5.27e-01 ✔ 5.28e-01 ✔ 9.06e-24 ✔ 

Freight handler          3.19e-10 ✘ 1.33e-01 ✔ 1.32e-02 ✘ 4.20e-54 ✔ 

Fuel handler             7.21e-09 ✘ 5.31e-01 ✔ 1.45e-01 ✔ 1.11e-02 ✔ 

Pax handler              2.57e-08 ✘ 3.12e-03 ✘ 1.62e-04 ✘ 4.47e-57 ✔ 

Technical handler              4.96e-10 ✘ 1.61e-02 ✘ 3.72e-04 ✘ 6.71e-43 ✔ 

Day              5.69e-09 ✘ 3.68e-06 ✘ 2.44e-05 ✘ 3.53e-16 ✔ 

Month            1.31e-09 ✘ 4.37e-09 ✘ 3.52e-08 ✘ 8.85e-12 ✔ 

Alliance         6.57e-10 ✘ 1.56e-01 ✔ 2.91e-02 ✘ 7.74e-14 ✔ 

Carrier type     3.73e-10 ✘ 2.88e-0 ✔ 8.39e-01 ✔ 8.19e-20 ✔ 

Hour 1.39e-06 ✘ 2.85e-12 ✘ 1.66e-13 ✘ 3.15e-42 ✔ 

Capacity 3.13e-10 ✘ 1.49e-02 ✘ 2.97e-02 ✘ 3.86e-03 ✔ 

Table 7: Statistical results of the categorical independent variables with the dependent variable 

Two tests were employed to assess the homogeneity of variances across groups: Bartlett's test and 
Levene's test. The Bartlett's test p-values are significantly less than 0.05 for most features, indicating that 
the variances are not homogeneous across groups. However, features like Clean Handler, Food Handler, 
Freight Handler, Fuel Handler, Alliance, and Carrier Type show p-values greater than 0.05, suggesting 
homogeneity of variances. Levene's test results show that all columns, except Fuel Handler and Clean 
Handler, have p-values less than 0.05, indicating unequal variances across groups for these features. 
Homogeneity was also visually checked using boxplots of the top 10 most occurring values per feature, 
found in Appendix 8. 

The results from the Shapiro-Wilk test clearly indicate that none of the columns meet the assumption of 
normality, as further shown in the residual plots in Appendix 9. Given these violations of assumptions for 
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parametric tests, the use of the non-parametric Kruskal-Wallis test is justified. The Kruskal-Wallis test 
results indicate significant differences between the groups for all columns analysed. 

The p-values for all features, based on the Kruskal-Wallis test, are significantly less than 0.05. This indicates 
that there are significant differences between the groups for each feature. The null hypothesis, stating that 
the medians of all groups are equal, can be rejected for each column. The small p-values suggest strong 
evidence against the null hypothesis, implying that at least one group median is significantly different from 
the others. These findings reveal statistically significant differences in the distributions of the groups being 
compared, highlighting variability in the data due to actual differences between the groups rather than 
random chance. 

In summary, none of the event features follow a normal distribution, several features include 
heteroscedasticity, and the Kruskal-Wallis test confirms significant differences between groups for all 
analysed features. 

4.2 Prediction models 
The logistic regression model, optimized with hyperparameter tuning, resulted in moderate performance 
in predicting delays. The optimal parameters were determined C=0.01 and the solver set to 'liblinear', 
balancing the bias-variance trade-off, and ensuring computational efficiency. For the Random Forest 
model, a comprehensive hyperparameter tuning process identified the best configuration: bootstrap set 
to True, no restriction on maximum depth, minimum samples per leaf set to 4, minimum samples per split 
set to 10, and 300 estimators. This setup aims to balance bias and variance for optimal prediction accuracy. 

The LightGBM model also followed hyperparameter tuning and optimal hyperparameters included a 
maximum depth of 10, a minimum of 30 child samples, 300 estimators, and 31 leaves. The XGBoost model 
was also optimized, with the best hyperparameters identified as follows: colsample_bytree set to 1.0, 
learning rate set to 0.3, max depth set to 3, number of estimators set to 300, and subsample set to 1.0.  An 
ensemble model integrating Random Forest, LightGBM and XGBoost classifiers was constructed using 
voting. This ensemble approach uses the strengths of each algorithm, achieving a more balanced and 
robust predictive capability than any single model. In table 8, the performance of the various machine 
learning models is overviewed based on the metrics that are discussed in the methodology. These results 
are emerged from testing the tuned models on the test set of the data. This is 20 percent of the dataset, 
which is equal to 3250 datapoints, and was split from the train data 

Model Accuracy Precision Recall F1 Score AUC 

Logistic Regression 0.6218 0.5550 0.5881 0.5710 0.66 

Random Forest 0.6388 0.5737 0.6075 0.5901 0.69 
LightGBM 0.6526 0.5889 0.6240 0.6059 0.70 

XGBoosting 0.6588 0.6179 0.5313 0.5713 0.69 

Ensembled model 0.6575 0.6030 0.5852 0.5939 0.71 

Table 8: Prediction model performance 

The confusion matrices for the prediction models can be found in Appendix 10, providing a visual 
representation of their performance in terms of true positives, false positives, true negatives, and false 
negatives. The Random Forest and LightGBM models show balanced performance with a good mix of true 
positives and true negatives. XGBoost resulted in a higher number of true negatives but struggles with true 
positives, indicating a bias towards predicting non-delays. The Ensemble model, leveraging the strengths 
of all three models, achieves a balanced performance with improved accuracy in both true positive and 
true negative predictions, demonstrating its robustness in delay prediction. 
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Feature importance for the models is visualized and found in Appendix 11. The importance values were 
normalized to ensure a fair comparison. This is because feature importance calculations for different 
models varies, as explained in the methodology chapter. The ensemble model's feature importance 
demonstrates a balanced contribution from various features since it aggregates the other models’ feature 
importance. The results indicates that the models prefer different features. The feature importance 
analysis reveals that operational and maintenance events, such as Pushback Events, Bax Events, and Water 
or Toilet Events, are critical predictors of delays across all models. The XGBoost model also highlights 
calendar features like Ramp, Day, and Month as significant. The Ensemble model, combining insights from 
all individual models, identifies Ramp and Pushback Events as the most influential features. The ramp 
feature is prioritized in the XGBoost classifier, causing it to be the highest influencing feature in the 
ensembled model as well. These findings underscore the importance of focusing on specific operational 
activities and time-related factors to mitigate delays effectively. 

4.3 Counterfactual explanations 
Counterfactual explanations are techniques of machine learning explainability which serve to create 
insights into important features and how small changes in these features can change the predictions of a 
model. This study utilizes two types of counterfactual explanations, local feature importance of individual 
datapoints (4.3.1) and global feature importance (4.3.2). 

4.3.1 Counterfactual instances 
This section presents the outcomes of the analysis, focusing on the generation of counterfactual instances 
for delay predictions at Schiphol Airport. A specific instance from the dataset was selected to generate 
counterfactual explanations (table 9). This query instance, consisted of continuous and categorical 
features, is an example of an instance where the model predicted a deviation of more than 5 minutes 
between the TOBT and the AOBT. Keep in mind that the events are translated to the percentage this event 
took place within the complete turnaround. Using the DiCE ML library, counterfactual instances in table 10 
were generated by altering the feature values to achieve the opposite class. These counterfactuals are 
designed to highlight the minimal changes required to switch the prediction, providing clear guidance on 
which aspects of the turnaround process are most impactful. The variable that changed in the 
counterfactual explanation consists of two stars behind their value. 

Bax 
Events 

Catering 
Events 

Line 
Maint. 
Events 

Water 
Toilet 
Events 

Push 
back 
Events 

Fuel 
Events 

Pax 
Events 

Capa
city 

Ramp Month Day Hour 

8.32 18.91 73.57 0.00 20.55 0.46 89.90 18 D27 February Thursday 19.0 

Table 9: Counterfactual instance example 

Bax 
Events 

Catering 
Events 

Line 
Maint. 
Events 

Water  
Toilet  
Events 

Push 
back  
Events 

Fuel 
Events 

Pax 
Events 

Capa 
city 

Ramp Month Day Hour 

8.32 18.91 73.57 0.00 20.55 0.46 89.90 3** D27 February Thursday 19.0 

8.32 18.91 73.57 0.00 20.55 0.46 89.90 7** D27 February Thursday 19.0 

8.32 18.91 73.57 0.00 14.30** 0.46 89.90 18 D27 February Thursday 19.0 

8.32 18.91 73.57 0.00 12.10** 0.46 89.90 2** D27 February Thursday 19.0 

5.75** 18.91 73.57 0.00 20.55 0.46 89.90 18 D27 February Thursday 10.00** 

8.32 18.91 73.57 0.00 20.55 0.46 89.90 4** D27 February Thursday 10.00** 

8.32 18.91 73.57 0.00 20.55 0.33** 89.90 7** D27 February Thursday 19.0 

8.32 18.91 73.57 0.00 20.55 0.46 89.90 11** D27 February Thursday 19.0 

8.32 18.91 73.57 0.00 20.55 0.46 89.90 3** D27 January** Thursday 19.0 

8.32 18.91 61.08** 0.00 20.55 0.46 89.90 18 D27 February Monday* 19.0 

Table 10: Counterfactual explanations for instance example 
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These insights are intended to guide operational adjustments aimed at minimizing delays. While not all 
features are practically changeable, counterfactuals still offer valuable insights into the root causes of DOBT 
delays. The tables in this section present only the counterfactuals of a single datapoint, but using this 
example and implementing it in a dashboard were other datapoints and even new datapoints can be used 
creates unlimited possibilities in post analyses into turnaround delays. 

4.3.2 Global feature importance 
The global counterfactual feature importance plot for the XGBoost model (figure 5) reveals the key factors 
influencing delay predictions. This plot was generated by analysing the training data using the DiCE ML’s 
global counterfactual feature importance method, which calculates the importance of each feature based 
on counterfactual explanations. Specifically, it used 10 counterfactuals for each datapoint to understand 
how changes in each feature affect the model's predictions, without applying any post hoc sparsity 
parameter. 

The plot indicates that Pax Events is the most influential feature in predicting delays, followed by Water or 
Toilet Events and Pushback Events for the XGBoost model. The Random Forest model also found Pax Events 
as an important global counterfactual feature, but also presents catering events as an important feature 
Other significant features include Fuel Events, and Line Maintenance Events. The global feature importance 
plots define the events durations as the most important features for creating counterfactual explanations. 
These insights are crucial as they highlight the operational areas that have the most impact on delay 
predictions, thereby allowing stakeholders to focus on these aspects to improve on-time performance. 

 

Figure 3: Global counterfactual feature importance 

The LightGBM model, and therefore also the ensembled model could not be utilized for counterfactual 
generations. This is because, if 2 to the power of max depth is greater than number of leaves, the model 
does not fully utilize the depth of the tree, resulting in lower accuracy. By default, number of leaves is set 
to 31, which might be insufficient if you have a large max depth. This is the case since the max depth was 
tuned to 10. 

4.4 Dashboard 
In this section, the focus lies on the dashboard application developed for predicting and analysing 
turnaround delays in airport operations. Screenshots of the dashboard is presented in Appendix 13. In the 
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screenshots, the functionality of the dashboard is displayed by selecting a flight ID, predicting delay, and 
generating counterfactual explanations. The dashboard functions as an intuitive and interactive interface, 
enabling stakeholders to input specific flights and obtain predictions and counterfactual analyses. The 
dashboard was designed to provide a user-friendly experience. Users have the option to select a flight ID 
and input the turnaround time. Upon clicking the "Predict and Generate Counterfactuals" button, the 
dashboard communicates with the backend server, which employs the Random Forest machine learning 
model to predict the turnaround delay and generate counterfactual scenarios. Results are presented in 
two sections: the Original Data Point and Counterfactuals. The Original Data Point section displays the 
details of the selected flight. The Counterfactuals section showcases alternative scenarios generated based 
on the input parameters, enabling stakeholders to explore potential outcomes under different conditions. 
Changes between the original datapoint and the counterfactual explanation values are marked orange for 
easy readability. 
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5. Discussion 
This discussion chapter addresses the challenges and insights gained from predicting the delay of 

turnarounds at Schiphol Airport. It discusses literature findings (5.1), which were the foundation for this 

research. Furthermore, it goes of the results found in investigating feature importance (5.2). Thereafter, it 

explains the problems found from a data perspective (5.3). Then, it discusses external factor that influence 

turnaround times (5.4). Finally, it discusses the results concerning the created dashboard (5.5). The section 

answers the research sub questions and provides practical implications for improving operational efficiency 

and resource allocation. 

5.1 Literature findings 
The first sub question aims to research TOBT and how it is estimated. The research questions states: “What 
is Target Off-Block Time and how is it estimated?”. The literature review outlines that the TOBT is a crucial 
metric in the Airport Collaborative Decision-Making A-CDM process, which is designed to enhance airport 
operations through improved predictability and efficiency. TOBT represents the planned time at which an 
aircraft is expected to be ready for departure from its parking position. The initial TOBT is equal to the 
SOBT, which is based on the flight’s scheduled departure time. TOBT can be updated several times during 
the turnaround process based on the progression through various milestones. Each milestone reflects key 
stages in the aircraft’s arrival and turnaround, and any delays in these stages can trigger updates to the 
TOBT. This system ensures that TOBT is dynamically adjusted to reflect real-time conditions and operational 
status, thereby optimizing departure schedules and runway utilization (EUROCONTROL, 2017b; Schiphol 
Airport, 2024). 

The second sub-question states: “Which prediction machine learning models are currently used for Target 
Off-Block Time estimation?”. Based on the literature review, multiple models were considered in the pro-
con analysis, but Random Forest, LightGBM, and XGBoost were found to be the most applicable due to 
their performance and suitability for the nature of the data. Random Forest uses an ensemble learning 
method based on decision trees, offering high accuracy and robustness against overfitting. It is particularly 
useful for handling large datasets with many features, making it a reliable choice for predicting DOBT 
(Breiman, 2001; Liaw & Wiener, 2002). LightGBM is known for its efficiency and scalability, LightGBM can 
handle large-scale datasets and provides faster training speed compared to traditional gradient boosting 
methods (Ke et al., 2017). XGBoost enhances the gradient boosting algorithm's performance and scalability 
by incorporating regularization techniques to control overfitting. It combines the strengths of both boosting 
and bagging techniques (Chen & Guestrin, 2016). Given that the prediction involves a classification 
problem, a voting system was created to facilitate the development of an ensemble model. This approach 
combines the strengths of the individual models, balancing their biases and leveraging their collective 
strengths to improve prediction accuracy and robustness (Dietterich, 2000). 

The third sub question concerns the case of Schiphol and how for this airport a successful prediction model 
can be designed. It states: “How can machine leanirng mdoels be used to predict Target Off-Block Time at 
Schiphol Airport?”. Schiphol Airport provides a unique environment for implementing machine learning 
models to predict DOBT due to its adoption of the A-CDM process and the availability of data from the 
Deep Turnaround system. This AI-driven solution offers real-time insights and predictive capabilities by 
capturing and analysing over 70 distinct turnaround events through image-based processing. The Deep 
Turnaround system utilizes two cameras that take snapshots of the turnaround activities every five 
seconds, collecting data on various operational events. This extensive dataset includes historical, real-time, 
and predictive information that can be used to train machine learning models. By leveraging the data from 
the Deep Turnaround system and employing advanced machine learning models, Schiphol Airport can 
significantly enhance its ability to predict and manage TOBT. This approach not only improves the accuracy 



35 
 

of TOBT predictions but also enhances overall operational efficiency and reduces delays, ultimately 
contributing to better airport management and passenger satisfaction. 

5.2 Feature importance  
This study was designed to research the important factors during the aircraft turnarounds of Schiphol 
Airport. Therefore, the important of features influencing turnaround delays are measured by statistically 
analysing their impact on delay (5.2.1). Furthermore, machine learning models are created to predict this 
delay. Researching these model’s most important features creates insights in important variables during 
the turnaround (5.2.2). Understanding feature importance is also crucial for interpreting predictive models 
and improving their accuracy. When creating counterfactual explanations using the DiCE framework, more 
feature importance was researched by calculating the most important features for creating counterfactuals 
(5.2.3). In this section, the implications of using these different interpretations of feature importance are 
also discussed. 

5.2.1 Statistical results 
The statistical analysis conducted in this study provided insights into the significance of various continuous 
event features. Two types of analyses are conducted. First, the correlation analysis which employs 
Spearman’s rank correlation coefficient to evaluate the correlation between numerical features and the 
target variable (DOBT). Second, linear regression analysis was used to indicate their effect on the target 
variable. However, the low R-squared values indicated that these models explain only a small fraction of 
the variance in DOBT, suggesting the presence of additional influencing factors. 

Using this, the following results are found: 

• Bax Events: Although Bax Events showed a significant correlation with DOBT (p-value < 0.001), the 
correlation coefficient is very weak (0.0421), and the linear regression model only explains 0.18% 
of the variance (R-squared = 0.0018). This indicates that while Bax Events are statistically 
significant, they contribute minimally to the variability in DOBT. 

• Catering Events: Catering Events have a negative correlation with DOBT (-0.0462), suggesting that 
more catering events might slightly reduce the off-block time. However, like Bax Events, the R-
squared value is low (0.0021), explaining just 0.21% of the variance, which highlights limited 
predictive power. 

• Line Maintenance Events: These events showed a weak positive correlation (0.0689) and had 
slightly higher explanatory power in the regression model (R-squared = 0.0029), indicating a 
somewhat stronger influence on DOBT compared to Bax and Catering Events, yet still minimal 
overall impact. 

• Pushback Events: This feature has the strongest correlation (0.2073) among the analysed features 
and a relatively higher R-squared value (0.0096), explaining 0.96% of the variance in DOBT. 
Although this is still a small percentage, it underscores Pushback Events as a more critical factor in 
determining TOBT. 

• Pax Events: Both features are statistically significant with weak positive correlations (0.0653). The 
R-squared value is low (0.0018), indicating limited but notable contributions to the variability in 
DOBT. 

• Water or Toilet Events: This feature did not show a significant correlation with DOBT and had the 
lowest R-squared value (0.0006), indicating it does not meaningfully explain the variance in TOBT. 

• Fuel events: These events showed correlation significance, also being a weak positive correlation 
(0.0519). The R-squared value is very low (0.0020), indicating limited but some contributions to 
the variability in TOBT and AOBT. 
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In summary, while the statistical analysis shows that several event features have significant relationships 
with DOBT, the overall explanatory power of these individual features is low. This indicates that these 
factors have limited influence in the off-block delay in the way that they are measured. There have been 
several difficulties in accurately documenting the events’ durations, which may have degraded the 
correlation results, which will be discussed in paragraph 5.3. Nevertheless, these events also indicate that 
there are other external factors influencing the delays. 

The second part of the statistical analysis involved categorical and discrete numeric variables. For these 
variables, the Kruskal-Wallis Tests was used since the ANOVA assumptions were not met. The Kruskal-Wallis 
test results indicate significant differences between the groups for all categorical features. This implies that 
there are substantial differences in TOBT across different categories of handlers, days, months, alliances, 
carrier types, hours, and capacities. For instance: 

• Handlers: Significant differences in TOBT were observed across different types of handlers (e.g., 
main handler, apron handler, baggage handler), suggesting that the efficiency and methods of 
different handlers substantially affect turnaround times. 

• Time-Related Features: Day, month, and hour of the day showed significant variability in TOBT, 
indicating that temporal factors play a crucial role in determining off-block times. These findings 
suggest that operational strategies might need to be adjusted based on time-related patterns. 

• Operational Context: Variability in DOBT across different alliances and carrier types highlights the 
impact of operational practices and policies specific to different airlines and their partners. 

The results for categorical features show significant differences in DOBT across various groups, indicating 
that these factors have a meaningful impact on turnaround times. The variability between groups can be 
found in Appendix 7, which displays boxplots of different groups. For the handler companies, generally 
KLM’s handlers outperform the rest of the handler companies. They are the most occurring company since 
this research was executed on KLM’s hub airport. Therefore, these results show that they have finetuned 
their operations. Time-related events indicate the effect of rush hours at Schiphol Airport’s turnaround 
ramps. Boxplots show a general rise in DOBT for capacity in its mean and standard deviation, indicating 
that when more turnarounds happen simultaneously, DOBT delay has a greater change of occurring. 
Furthermore, the peak times at Schiphol also show higher changes of delay. This also indicates that the 
factor of more operational activity at the airport influences DOBT. The alliance where KLM belongs to, 
SkyTeam, also slightly outperforms the other alliances. 

5.2.2 Feature importance from prediction models 
The feature importance plots from the predictive models provide critical insights into which features most 
significantly impact the prediction of DOBT. These models, using different algorithms and techniques, using 
different aspects of the data that are influential in making accurate predictions. Understanding the 
differences is important for interpreting the models' feature importance. 

The Random Forest model uses an ensemble learning method based on decision trees, identifies Pushback 
Events, Bax Events, and Water or Toilet Events as the top three most important features. This model 
aggregates the predictions of multiple decision trees to improve accuracy and control overfitting. In 
Random Forests, feature importance is often measured by the average decrease in impurity (Gini 
importance) across all trees (Breiman, 2001; Liaw & Wiener, 2002): 

• Pushback Events: Consistently recognized as the most critical feature, likely due to its direct impact 
on the final phase of the turnaround process. 

• Bax Event and Water or Toilet Events: These operational activities are crucial, reflecting significant 
steps in the preparation and servicing of the aircraft. 
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• Ramp, Fuel Events, and Catering Events: These features also show high importance, indicating their 
roles in the variability of TOBT. 

• Time-Related Features: Day, month, and hour provide temporal context, affecting operational 
efficiency and resource allocation. 

LightGBM is known for its efficiency and scalability, particularly with large datasets. It uses a histogram-
based algorithm to bucket continuous feature values into discrete bins, speeding up the training process. 
The feature importance in LightGBM is derived from the number of times a feature is used to split the data 
across all trees (Ke et al., 2017): 

• Bax Events and Pushback Events: Like Random Forest, these events are top features, show their 
central role in determining TOBT for this model. 

• Water or Toilet Events and Catering Events: Highlighted due to their operational significance during 
the aircraft’s turnaround. 

• Fuel Events and Ramp: Important for their contributions to overall turnaround efficiency. The ramp 
is again the most important categorical feature. 

• Time-Related Features: Again, these features are least significant, underscoring the limited 
importance of temporal patterns. 

XGBoost enhances the gradient boosting algorithm's performance and scalability. It uses a more 
regularized model formalization to control overfitting. In XGBoost, feature importance can be measured by 
the gain, cover, or frequency of splits involving each feature (Chen & Guestrin, 2016): 

• Ramp: By far the most dominant features in XGBoost, indicating that the operational ramp 
environment heavily influences DOBT for this model. 

• Calendar Features: The inclusion of day and month signifies the model's sensitivity to periodic 
patterns and schedules. 

• Others: Different from other models, all other features are significantly less important to this 
model. 

The ensemble model combines insights from Random Forest, LightGBM, and XGBoost, balancing their 
individual biases and leveraging their collective strengths (Dietterich, 2000). The averaged feature 
importance values provide a comprehensive view: 

• Ramp and Pushback Events: These features emerge as the most influential, reflecting their critical 
roles across different modeling techniques. The feature importance of Ramp can be explained by 
the high importance it received from the XGBoost model. 

• Bax Events and Water or Toilet Events: Consistently important, indicating key operational activities. 

• Day, Catering Events, and Fuel Events: These features also show significant influence, highlighting 
the multifaceted nature of turnaround processes. 

• Time-Related Features: Found in the middle pact in terms of importance for the ensembled model, 
mostly because of their importance in the XGBoost model. 

In summary, while there is a consensus on the importance of certain features like Pushback Events and 
time-related features, the specific ranking and emphasis vary due to the technical nuances of each model. 
The consistency of the Pushback, Bax and Water or Toilet events as important model features indicate their 
influence on the predictions of the model. These insights help in understanding the models' behaviour and 
indicate operational improvements at Schiphol Airport. 
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5.2.3 Feature importance from global counterfactuals 
Global counterfactual explanations provide a clear perspective on feature importance by showing how 
small changes in specific features can change model predictions. This method enhances the interpretability 
of machine learning models, allowing stakeholders to understand which factors most influence the 
outcome and how adjustments can impact turnaround times. By examining global counterfactual 
explanations, we can identify the features that play important roles in determining DOBT and discuss their 
implications. The feature importance of counterfactual explanations is only researched for the Random 
Forest and XGBoost models, as LightGBM has complexities with its hyperparameters to run DiCE. The 
insights gained from counterfactual explanations improves transparency, making it easier for stakeholders 
to understand the rationale behind predictions and creating greater trust in automated decision-making 
systems, thereby facilitating their integration into airport operations (Ribeiro, Singh, & Guestrin, 2016).  

Pax Events (boarding and disembarking times) were shown to have the most significant impact on 
predictions. This highlights the importance of efficient passenger handling in minimizing delays. The 
feature importance plots from both XGBoost and Random Forest models confirm Pax Events as the top 
feature, showing their substantial influence. Improving passenger handling processes, such as optimizing 
boarding and disembarking procedures, can lead to significant reductions in turnaround times. Training 
ground staff and utilizing advanced boarding techniques can enhance efficiency in this area. This is a known 
bottleneck during the turnaround and there are several studies and experiments that tries to improve this. 
For instance, a study by Cook et al. (2021) found that implementing a dynamic boarding system, which 
adjusts the boarding process based on the real-time status of the aircraft and passenger flow, significantly 
reduced boarding times compared to the traditional methods. Another example is the use of biometric 
boarding gates, as experimented by Delta Air Lines, which streamlined the boarding process by reducing 
the need for manual checks and thereby speeding up the entire boarding procedure (Delta Air Lines, 2020). 
Additionally, a research study by Milne and Kelly (2020) on the "WilMA" (Window-Middle-Aisle) boarding 
method demonstrated it to be more efficient than the back-to-front method traditionally used by many 
airlines. 

Pushback Events consistently emerged as a critical factor in both the predictive models and counterfactual 
explanations. Adjusting the duration of pushback events significantly influenced the predictions, 
underscoring its important role in determining DOBT. This finding aligns with the operational importance 
of pushback as it marks the final phase of the turnaround process, directly preceding departure. Efficient 
management of pushback events can directly reduce turnaround times. Implementing standardized 
procedures and ensuring timely execution can mitigate delays associated with this critical phase.  Features 
such as the day of the week, month, and hour of the day were less important in the counterfactual 
explanations. Adjusting these temporal features did often not result in significant changes in the predicted 
turnaround times, underscoring the low influence of scheduling and time management. This can be 
explained by Schiphol’s ability to have enough resources ready for turnarounds. Furthermore, since the 
research was don from data of November until May, summer holiday peaks are not considered. Other 
operational events, such as Line Maintenance Events and Fuel Events, had medium significance in the 
counterfactual explanations. Adjustments in these events for some datapoints led to changes in 
predictions, indicating their importance in the overall turnaround process. Efficient management of 
maintenance and fuelling operations is found an important factor in turnaround delays.  

Global counterfactual explanations provide valuable insights into the factors influencing TOBT, highlighting 
the importance of pushback events, passenger handling, and temporal features. The visual analysis of 
feature importance further supports these findings, offering a understanding of the key drivers of 
turnaround times at Schiphol Airport. 



39 
 

5.2.4 Most important features 
To answer the research question "Which metrics are important when estimating Target Off-Block Time?", 
the research conducted identified several key features that are crucial for estimating DOBT. Through 
statistical analysis, machine learning models, and counterfactual explanations, the most important metrics 
have been highlighted. Pushback Events emerged as the most influential factor across all methods, 
significantly affecting TOBT predictions due to their role in the final phase of the turnaround process. Pax 
Events also demonstrated substantial impact, emphasizing the need for efficient passenger handling to 
minimize delays. Other notable metrics include Bax Events, Water or Toilet Events, and Catering Events, 
which, although showing weaker correlations individually, contribute meaningfully to the overall prediction 
models. Time-related features such as the day of the week, month, and hour of the day showed variability 
in importance, often reflecting operational patterns and peak times at the airport. Overall, understanding 
these key metrics can lead to improvements in TOBT predictions and airport turnaround efficiency. 

5.3 External Factors Influencing Turnaround Delay 
External factors play a crucial role in influencing turnaround delays at airports. These are not taken in 

consideration for this research, which aimed to research delay purely on the data mentioned. These 

factors, often beyond the control of the airport or airlines, can significantly impact the efficiency of 

turnaround operations. 

Adverse weather conditions, such as heavy rain, snow, fog, or thunderstorms, can severely disrupt airport 
operations. These conditions can delay flights, affect ground handling activities, and reduce visibility, 
making it difficult for ground staff to perform their tasks efficiently. Studies have shown that weather is a 
major cause of delays at airports worldwide (Schultz et al., 2018; Sanz et al., 2021). Although using robust 
machine learning models with loads of data should generally not be affected by weather conditions, doing 
post turnaround analysis for individual turnarounds should take weather conditions during the turnaround 
into consideration. 

ATC delays occur when there is congestion in the airspace or at the airport. These delays can result from 
high traffic volumes, limited runway capacity, or ATC strikes. Such delays can disrupt the planned sequence 
of arrivals and departures, leading to cascading delays in turnaround operations (Hao & Hansen, 2018; 
Schultz et al., 2018). This occurs from time to time at Schiphol, due to the limited capacity it can house. 
Schiphol Airport is one of the busiest airports of Europe and is often challenging its own runway capacity 
in peak departure hours. ATC delay can therefore more regularly occur due to a domino effect of delays, 
requiring aircraft to wait for each other.  

Compliance with aviation regulations, such as security checks and maintenance requirements, can 
introduce delays. These regulatory requirements, while essential for safety and security, can be time-
consuming and impact the overall turnaround time (Holloway, 2016; Tretheway & Andriulaitis, 2015). The 
so-called preflight checks must be carefully executed before an aircraft can be cleared to leave the gate 
and can therefore be a factor in turnaround delay.  

Unexpected technical issues, such as mechanical failures or equipment malfunctions, can cause significant 
delays. These issues often require immediate attention and repair, which can extend the turnaround time 
considerably. The availability of technical support and spare parts also influences the duration of these 
delays (Rebollo & Balakrishnan, 2014; Zhang & Lian, 2019). These delays are often found inside the body 
of the plane rather than outside, making it hard to detect for AI imagery detection cameras. 

Delays caused by passengers, such as late arrivals at the gate, issues during boarding, or last-minute 
ticketing and baggage problems, can also impact turnaround times. Efficient passenger management is 
crucial to minimize these delays (Wang et al., 2018; Lee & Lee, 2016). Furthermore, Schiphol Airport is part 
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of a hub and spoke network. This means that flights all over Europe arrive at Schiphol Airport to make a 
transfer too for example transatlantic destinations. Schiphol Airport is also often used as a transfer airport 
inside Europe. This means that often departing flights are depended on arriving flights to fill the plane with 
passengers.  If one of the arriving flights is delayed, it can cause delay for the departing flight. 

Limited airport infrastructure, such as insufficient gates, parking spots, or ground handling equipment, can 
cause bottlenecks during peak times. These constraints can slow down the turnaround process and 
increase the likelihood of delays (de Neufville & Odoni, 2016; Delcea et al., 2018). At Schiphol Airport, 
these constraints are particularly significant during peak travel seasons or times of high passenger traffic. 
The demand for gates and parking spots often exceeds the available supply, causing aircraft to wait for a 
spot to become available. This waiting time can disrupt the planned sequence of arrivals and departures, 
leading to cascading delays. Additionally, the efficiency of ground handling operations, which include 
baggage handling, fuelling, and catering, can be impacted by the availability and capacity of ground 
handling equipment (Schiphol Group, 2021). 

5.4 Post analysis dashboard for turnaround delay 
The fifth research question concerned: “How can machine learning explainability lead to counterfactual 
insights?” To be able to present counterfactual insights to the focal company of LVNL a dashboard is created 
to enable operational usages of generating counterfactuals. The dashboard developed for predicting 
aircraft turnaround times at LVNL is a tool designed to improve operational efficiency and decision-making 
processes. It captures detailed data on various turnaround events such as Bax Events, Fuel Events, and 
Catering Events. Events are recorded with precise timestamps, enabling accurate duration tracking and 
analysis.  

One of the dashboard’s core functionalities is its predictive analysis capability. Using machine learning 
algorithms, the dashboard predicts the difference between the TOBT and the AOBT. These predictions help 
in identifying potential delays in the turnaround process, thereby enabling more effective scheduling and 
resource allocation. The predictive feature enables proactive decision-making, allowing stakeholders to 
anticipate and mitigate delays before they impact flight schedules. 

The dashboard also generates counterfactual scenarios, which are alternative scenarios that show how 
different variables might impact turnaround times. This functionality is particularly useful for identifying 
the key factors that contribute to delays. By understanding these factors, LVNL can implement targeted 
interventions to improve operations and reduce turnaround times delay occurrences. The counterfactual 
analysis provides a deeper insight into the potential improvements that can be made in the turnaround 
process. 

At LVNL, the dashboard that is created during this research can be utilized to improve decision-making by 
providing data and can create a different way of doing post hoc analysis. This capability supports more 
informed decisions, ultimately improving turnaround efficiency. Furthermore, by identifying the causes of 
delays, the dashboard aids in optimizing resource allocation, which helps in reducing operational costs. 
Accurate predictions also facilitate better scheduling, minimizing delays and enhancing the reliability of 
airport operations. Continuous monitoring of performance metrics ensures that LVNL can make data-
driven decisions to improve turnaround processes continually. 

The final sub question stated: “How can a dashboard be created to overview the models’ predictions?”. A 
dashboard to overview the models' predictions can be created by combining Flask and Dash frameworks. 
Flask serves as the backend to handle API requests, manage machine learning models, and generate 
predictions and counterfactual explanations. Dash provides the front-end interface, enabling users to 
interact with the data, view predictions, and visualize results through an intuitive and interactive web-
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based dashboard. This setup ensures a robust and user-friendly platform for real-time decision-making. 
Screenshots of the tool can be found in Appendix 13. 

5.5 Limitations 
The accuracy and reliability of predictive models for aircraft turnaround times at airports are significantly 

affected by various forms of noise and hard-to-define events in the data. In this discussion, these issues 

are explained, outlining the specific challenges encountered and their implications for data analysis and 

model performance. It first discusses which noise was found in the data (5.3.1). Thereafter, it discusses the 

various challenges in defining events (5.3.2). Then, there is a section that discusses how these issues impact 

model performance (5.3.3).  

5.5.1 Noise in the Data 
Noise in data refers to random variability or errors that obscure the true signal. The main noise in the data 
that is an issue is the inconsistent data recording. All events that are captured by the DeepTurn cameras 
are documented in the data as a DateTime datatype. This means that the cameras detect an event 
occurring and record that events’ date and time of that camera frame. These cameras have an update 
interval of five seconds, after each interval the camera looks for new events on the ramp to record. The 
problem with this is that the camera often detects the start of the event but does not capture the end. An 
example of this problem occurring is during the refuel process of the turnaround. There are six subevents 
for this main event recorded in the data: First Fuel Truck Appears, First Fuel Truck Connects, First Fuel Truck 
Stops in Position, Last Fuel Truck Disappears, Last Fuel Truck Finalizes, Last Fuel Truck Moves Out of 
Position. The problem does not occur in capturing the appearance and disappearance of the first and the 
last fuel truck, as this is correctly captured for most of the turnarounds. It does occur for the other three 
events, which is an issue since these events are more accurate features to define the fuelling event. There 
are multiple datapoints where the fuel truck is in position and is connected but have no recorded data of 
the fuel truck finalizing and moving out of position. Similarly, this also happens the other way around. And 
then there are also instances where the fuel truck does stop in position, does not connect, does finalize 
but does not move out of position. This indicates that the DeepTurn cameras and there AI image 
recognition systems have some error in their system. This is not an issue exclusive to the fuelling event, it 
occurs for almost every event it captures. 

5.5.2 Hard-to-Define Events 
Certain events in the turnaround process are difficult to define and capture accurately due to multiple 

reasons. The most important problem is defining start and end points of events from the data. All 

turnaround activities are composed of several sub-events. For example, passenger boarding involves 

multiple steps such as connecting the passenger bridge, opening the aircraft door, and actual boarding of 

passengers. The difficulty in defining when an event truly starts and ends adds to the complexity.  For some 

events, such as the previous example of the fuel truck, there can be clear start and end definition. This can 

be done based on the connect and finalize data, but it can also be defined using the in and out of position 

timestamps. For other events, this is not the case. The best example is the water and toilet event during 

the turnaround. There are only two timestamps captured for this event in the DeepTurn data, the truck 

appearing and disappearing. It does not mention anything about the start and end of the event. Using 

these sub events to measure the duration of time the water and toilet events presents multiple problems. 

First, when this truck drives somewhere within the range of the cameras, these events are captured, even 

when the truck was not involved in the plane’s turnaround. Measuring the event time for these 

occurrences resulted in an event of less than two minutes, creating error in the dataset. Second, often this 

event took way longer than it should have lasted, due to that the truck was not disappearing from the 
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ramp. Water and toilet trucks often appeared on the ramp and stayed there for an hour, which is an 

unrealistic duration of the event. Third, there is no reliability in measuring this event. There are no 

indicators of the event’s duration. There could be instances where the truck drove into the camera’s view 

and parked there for a couple minutes until eventually disappearing again. This would lead to a falsely 

recorded event. 

Events like maintenance checks or cleaning may not have clear start and end points. These events often 

happen from inside the aircraft, making it impossible to be captured by the outside cameras. Of course, 

there could be event registration done based on vehicles outside of the aircraft, but there is no certainty 

that these events are happening and there are no clear start and end points. Furthermore, unexpected 

maintenance can cause a lot of extra delay during the turnaround. This is difficult for the cameras to detect 

and can influence prediction model drastically without capturing the reason of delay. 

Turnaround processes involve multiple concurrent activities, such as refuelling, loading baggage, and 

boarding passengers. These activities are often interdependent, and delays in one can cascade into delays 

in others. Capturing and modelling these interdependencies accurately is challenging. An example is that 

when a flight arrives at the gates, there may be problems with deboarding the plane. This could be due to 

wounded people or due to limited deboard entrances available. When people are still within the aircraft, 

it is prohibited to refuel the plane due to safety reasons. But when the refuelling truck is already in position 

and defining this as the start of the fuelling event, this can cause misleading event durations. Another 

problem can arise from boarding the plane, since passengers arriving late at the gate is an often-occurring 

problem. This may lead to event durations, such as pushback events, to last longer due to external reasons. 

Based on the documentation of DeepTurn (Schiphol DeepTurn department, 2023) there should be 72 

different sub events captured within the data. Unfortunately, in the data presented for this research, there 

were only 68 events available. The missing events were found in the start of boarding and end of boarding 

of passengers, and in the start and end of loading baggage into the aircraft. While just missing four sub 

events does not look that bad, these sub events would be of create importance for creating events. If they 

were available in the data, deboarding events and boarding events could be split in two. The same is the 

case for unloading and loading of baggage into the plane. These events should be handled as separate 

events, they do not directly rely on each other and happen during the start and the end of the turnaround 

phase. In the current research, as explained in the methodology, these events are regarded as a combined 

pax events and bax events, due to the limited event information. This is technically unfair to do and splitting 

these events into two would greatly add value to this research. 

5.5.3 Effect on research 
The presence of noise and hard-to-define events poses several challenges to the development and 

performance of predictive models. Noise and ambiguous events reduce the data quality, making it difficult 

for models to learn the true patterns in the data. This can lead to lower prediction accuracy and higher 

error rates. Models trained on noisy data are likely to overfit the noise rather than the underlying patterns 

(Van Buuren, 2018). Models trained on noisy and ambiguous data are likely to be less robust. They may 

perform well on training data but fail to generalize to new, unseen data. The variability in the data can 

cause the models to make inconsistent predictions under slightly different conditions (Tercan & Meisen, 

2022). The interpretability of models is compromised when the input data is noisy or poorly defined. It 

becomes challenging to draw meaningful insights from the model outputs or to provide actionable 

recommendations based on the predictions. The presence of noise can obscure the true relationships 
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between features and the target variable, making it difficult to explain why the model made a particular 

prediction (Van Buuren, 2018). To conclude, having these issues greatly affected the predictability 

performance of the models. This also caused unreliable feature importance results. The inaccurate way of 

measuring event duration also influenced the statistical results of this research. Finally, the counterfactuals 

explainability outcomes may exposes small changes in variables that are unreliable due to the performance 

of the prediction models. This is the case for the global counterfactual feature importance as well as the 

outcomes from individual datapoint counterfactuals, for example when utilizing the dashboard. 
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6. Conclusion 
This research investigates the deviations between Target Off-Block Time (TOBT) and Actual Off-Block Time 
(AOBT) at Schiphol Airport. For this, a new variable is defined, called Delta Off-Block Time (DOBT) which 
implies the difference between the two. Through a combination of statistical analysis, machine learning 
modelling, and counterfactual explanations, several critical findings and practical recommendations have 
emerged. The main research question of this report aims to answer is: 

What are the main factors influencing Target Off-Block Time estimation deviations during airport 
turnaround processes at Schiphol Airport? 

The study found key operational activities, such as the duration of baggage handling, pushback, and 
passenger handling events, as significant predictors of TOBT deviations. Additionally, temporal factors, 
including the time of day and specific days, substantially influence TOBT accuracy, with peak hours showing 
higher deviations. 

Noise in the data, particularly due to inconsistent event recording by the DeepTurn cameras, poses 
significant challenges. Events such as refuelling are often incompletely captured, leading to inaccuracies in 
the data. Furthermore, hard-to-define events, like the exact start and end times of certain turnaround 
activities, add complexity to the data analysis. For instance, the water and toilet servicing events are poorly 
defined with only appearance and disappearance timestamps, leading to unrealistic duration 
measurements. Maintenance checks and cleaning activities, often happening inside the aircraft, are 
difficult to capture accurately, affecting the reliability of the data. 

The study also notes missing sub-events in the DeepTurn data, which are crucial for accurately defining and 
splitting turnaround activities. The absence of these sub-events necessitates combining certain events, 
which could have been more precisely analysed if the missing data were available. 

The ensemble model, integrating Random Forest, LightGBM, and XGBoost, demonstrated robust 
performance in predicting TOBT deviations. Counterfactual explanations provided clear, actionable 
insights, highlighting the minimal changes needed to alter outcomes. For example, reducing the duration 
of specific turnaround events by a few minutes can significantly align TOBT with AOBT, thus minimizing 
delays. 

A user-friendly dashboard, developed using Flask and Dash frameworks, allows stakeholders to visualize 
model predictions and counterfactual insights. This tool supports informed decision-making and 
operational adjustments, enabling proactive measures to mitigate potential delays and enhance overall 
efficiency. By integrating predictive models and counterfactual explanations into operational systems, 
Schiphol Airport can improve TOBT accuracy, leading to better planning and coordination among various 
stakeholders.  

This research significantly advances the understanding and management of TOBT deviations at Schiphol 
Airport. Combining statistical analysis, machine learning, and explainability tools provides a comprehensive 
framework for improving turnaround processes. Implementing these insights will enhance operational 
efficiency and decision-making, benefiting Schiphol Airport and potentially serving as a model for other 
airports.  
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7. Recommendations 
Based on the findings of this research, several key recommendations are proposed to enhance the accuracy 
of TOBT predictions and improve the overall efficiency of turnaround processes at Schiphol Airport. These 
recommendations focus on improving data collection, accounting for external factors, and redefining 
events for better precision. 

1. Improving Data Collection 

One significant improvement would be enhancing data collection by the cameras. It is recommended to 
explore ways to reduce noise in the data, which is further explained in the discussion chapter (5.5.1). 
Possibilities to improve this are using cameras with higher updated frames, research improvements in 
cameras coverage and generally keep monitoring the performance of the AI recognition cameras. 

Cameras with higher frame rates can capture events more frequently and accurately, reducing the chances 
of missing critical sub-events. Additionally, enhancing the AI algorithms for better detection and 
classification of events is essential. Advanced machine learning models trained to recognize the different 
turnaround activities with higher accuracy can significantly improve data quality. Furthermore, keep 
training the AI recognition model based on more data can improve the performance. 

Ensuring complete coverage is another potential improvement. The cameras should cover all critical areas 
and angles of the ramp to capture all relevant activities without blind spots. In the current situation, two 
cameras are used to detect the turnaround events, but there should be explored if more cameras could 
improve this. Enhanced coverage will help in capturing the start and end of all events more accurately, 
thereby improving the overall reliability of the data. 

Regular maintenance and calibration of the cameras and AI systems should be implemented to ensure they 
function optimally and provide accurate data consistently. A regular maintenance and calibration schedule 
will help in maintaining the quality of data collection, minimizing errors, and ensuring the systems are up 
to date with the latest technological advancements. 

2. Redefining Events Using Start and End Sub-Events 

A critical aspect of improving data accuracy is the detailed definition of each event in the turnaround 
process by clearly specifying start and end sub-events. Developing standardized protocols for identifying 
the exact start and end points of each event is essential and is insufficiently possible with the current 
timestamps. More on this is discussed in chapter 5.2.2. These protocols should aim to avoid using appear 
and disappear as event identifiers. Using these features as start and end definitions for events proved to 
be unreliable. 

• Fuel events: First Fuel Truck Stops in Position → Last Fuel Truck Moves Out of Position 

The fuel events can successfully be recorded with the uses of these two subevents. These events are 
already captured by the cameras and therefore can easily be used. These events should be used over the 
First Fuel Truck Connects and Last Fuel Truck Finalizes due to the higher amount of noise in capturing those 
events. 

• Pushback events: Tug Idle Connected Starts → Tug Idle Connected Ends 

During this research, the pushback events were measured based on the Tug Idle Connected Starts and 
Aircraft Moves Out of Position events. This was because Tug Idle Connected Ends was regularly missing in 
the data. By improving the data collection as recommended, this can be improved so that this event is 
more accurately defined. 
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• Bax events: Bax Unloading Starts → Bax Unloading Stops 
Bax events: Bax Loading Starts → Bax Loading Stops 

One of the problems faced with the data was that documentation of DeepTurn included events that were 
missing in the data. If these events are included in the data, it would enable to split the bax events into 
unloading and loading. This would greatly improve the prediction models since these are separate events 
during the turnaround.  

• Line Maintenance events: First Line Maintenance event → Last Line Maintenance event 

This event will be dependent on the possibilities in detecting sub events. In the current data, it defines First 
Oil Check Truck Appears, Last Oil Check Truck Disappears, Power Connects and Power Disconnects. As 
stated, it should be avoided to use appear and disappear as event definitions. Therefore, there should be 
explored to capture other events, such as First Oil Truck Stops in Position. Furthermore, it should be 
explored if more line maintenance events can be captured. 

• Water/Toilet Events: First Water/Toilet Truck in Position → Last Water/Toilet Truck In Position 

These events are not yet available in the data since they are not captured by the DeepTurn cameras. For 
now, only the appears and disappears events are registered, but as stated this is not acceptable as accurate 
start and end events. Therefore, it should be explored to find ways to recognize the positional events. 

• Catering Events: First Catering Truck Starts Ascent → Last Catering Truck Completes Descent 

For catering events, the start of the first truck ascending is missing. This should be added to the DeepTurn 
data since it is a more accurate way of identifying the start of catering events then by using First Catering 
Truck Completes Ascent. This is because when the ascent of the truck is completed, the catering events 
has already started. 

• Pax events: Pax Disembark Board Starts → Bax Disembark Board Stops 
Bax events: Pax Boarding Starts → Pax Boarding Stops 

Just like bax events, pax events should be considered as two separate events. Disembarking is one of the 
first processes during the turnaround, while boarding happens at the later stages. Accurately recording 
these events has shown trouble, as there are different ways the plane can be boarded. For example, KLM 
aircraft prioritize boarding with the use of bridge, focusing over the quality of their services. Low-cost 
carriers will look for the most efficient way of boarding, which can be for example with stairs leading to 
multiple entrances of the aircraft. Therefore, different starting and end points need to be identified for 
these processes. And if bridges are used, it may be hard to recognize when boarding starts, or disembarking 
is finished. Therefore, for accurate data extern data sources from Schiphol should be used. 

By focusing on these two key areas, Schiphol Airport can significantly improve the accuracy and reliability 
of this predictive models for TOBT, enhance operational efficiency, and reduce turnaround delays. These 
measures will also provide a more detailed and accurate understanding of the factors influencing 
turnaround times, facilitating better decision-making, and planning. Improving the data collection and 
event definitions will likely improve the business issue since research results will be more accurate. 
Moreover, predictive models will potentially be more accurate and counterfactual explanations will be 
more accurate. 
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Appendix 1: Extended literature review counterfactual XAI 
Dandle and Molnar (2023) describe counterfactual explanations as the smallest modification to the feature 
values that transforms a prediction into a predetermined output. With their logical understanding into the 
reasons behind specific outcomes, counterfactual explanations present a reliable method for 
understanding the predictions made by machine learning models. Counterfactual explanations 
demonstrate how modifications to input variables impact model predictions by modelling alternative 
scenarios in which important features are adjusted. This approach not only improves interpretability and 
transparency, but it also gives users the ability to investigate practical insights for better results. The 
Rashomon effect presents a problem, since there could be several possible counterfactuals for a single data 
point, which could cause interpretation to become unclear. However, counterfactual explanations are a 
useful tool for clearing up complex model behaviour and directing decision-making procedures due to their 
simplicity and clarity (Dandle & Molnar, 2023). In their exploration of post-hoc explanations within the 
domain of explainable Artificial Intelligence (XAI), Ferrario & Loi (2022) highlight the importance of 
counterfactual explanations as essential human-machine learning model interfaces that clarify model 
results and provide practical guidance on how to get different outcomes. Nonetheless, recent results from 
a systematic review by Chou et al. (2022) creates doubt on the counterfactual approach's ability to explain 
causality in XAI. They found that because the counterfactual approach's underlying framework was not 
developed in accordance with accepted causality theories, it is unclear how to establish causality. Baron 
(2023) suggests utilizing the classic causality approach to improve the counterfactual approach's ability to 
provide causal understanding in XAI, building on the work of Chou et al (2022). In other words, 
counterfactual XAI is a key tool to get a better understanding of feature importance in prediction models. 
Utilizing this is essential to get a better understanding of features influencing TOBT predictions and 
therefore utilized in this study. Furthermore, counterfactual XAI in TOBT or A-CDM in general has not been 
published in a research paper and therefore reveal a research gab. This further underlines the relevance of 
this research. 

Various methodologies have been proposed to address the challenge of creating counterfactual 
explanations in machine learning models, offering insights into why certain predictions are made and what 
changes could lead to different outcomes. One approach, introduced by Cui et al. (2015), is Optimal Action 
Extraction (OAE), which is designed for models like ensembles. OAE uses Integer Linear Programming (ILP) 
with a solver to find optimal solutions, specifically aiming to provide explanations in instances where the 
desired outcome is not achieved. In a similar way, Wachter et al. (2017) presented WACH, which minimizes 
a loss function incorporating quadratic distance terms between desired and predicted outcomes, along 
with distance terms between input instances and counterfactuals. By balancing these terms, WACH aims 
to find counterfactual instances that are close to the original but lead to the desired outcome, thereby 
providing insightful explanations. Dhurandhar et al. (2018) proposed the Contrastive Explanation Method 
(CEM), which focuses on generating contrastive explanations by playing around with input instances to 
ensure a change in the predicted class. CEM uses an autoencoder to evaluate instances to known data, 
ensuring posibility in the generated explanations. By optimizing a loss function that encourages different 
predictions while minimizing reconstruction error, CEM generates counterfactual explanations that 
contrast with the original prediction, creating insights on the decision-making process of machine learning 
models. In contrast, Artelt (2019) introduced Counterfactual Explanations via CEML, providing a toolbox 
for producing counterfactual explanations across different types of black-box models. While not formally 
presented in a paper, CEML offers solutions based on optimization designed for different model types, 
thereby contributing to the generation of insightful explanations in diverse scenarios. Additionally, 
Chapman-Rounds et al. (2019) proposed Explanation by Minimal Adversarial Perturbation (EMAP), also 
known as FIMAP, which is a model and data-agnostic approach. By training a model to mimic the behaviour 
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of the black-box model, EMAP identifies minimal perturbations needed to change the model's prediction 
while ensuring validity, thereby offering interpretable explanations.  

Dhurandhar et al. (2019) extended CEM to Model Agnostic Contrastive Explanations Method (MACEM), 
focusing on providing model-agnostic contrastive explanations by estimating gradients instead of directly 
calculating them. MACEM offers an approach to generating contrastive explanations across different model 
types, aiming to highlight actionable insights by identifying perturbations that lead to different model 
predictions. Furthermore, Downs et al. (2020) developed Counterfactual Reasoning Using Disentangled 
Subspace (CRUDS), which extends the concept of counterfactual explanations by using Conditional 
Subspace VAE (CSVAE) to generate explanations. CRUDS identifies relevant features for generating 
counterfactuals while filtering out irrelevant ones, thereby providing interpretable explanations by 
focusing on uncomplicated feature representations and causal relationships. Joshi et al. (2019) proposed 
Recourse Exploration via Variational Inference and Search (REVISE), designed to provide counterfactual 
explanations that account for actionability and causality. REVISE identifies counterfactual instances that 
not only change the predicted outcome but also respect causal relationships, thereby offering actionable 
results in complex decision-making scenarios. Lucic et al. (2019) introduced Flexible Optimizable 
Counterfactual Explanations for Tree Ensembles (FOCUS), extending counterfactual explanation methods 
to non-differentiable tree ensembles by leveraging probabilistic model approximations. FOCUS aims to 
generate counterfactual explanations for tree-based models by replacing terms in the loss function with 
differentiable approximations, providing interpretable insights into model decisions. The Example-Based 
Counterfactual explainer (EBCF) introduced by Mahajan et al. (2019), uses a variational autoencoder (VAE) 
to regularize the generation of counterfactuals. It uses a fine-tuning phase that adjusts model parameters 
to make sure feasibility through causality, adding a regularization term to the loss function to enforce 
plausibility by checking known causal relationships. EBCF uses the Adam optimizer and handles categorical 
features with one-hot encoded vectors, controlling their feasibility by the VAE. Another method, the 
efficient search for Diverse Coherent Explanations (DCE) proposed by Russell (2019), builds upon WACH to 
find diverse counterfactuals. DCE formulates the problem as a linear program, with features treated as 
integers through one-hot encoding. Plausibility is ensured by a set of linear constraints, and diversity is 
induced through additional constraints that reduce the possible values with respect to already generated 
counterfactuals.  

Ustun et al. (2019) introduced the Actionable Recourse (ACTREC) method, which addresses the problem 
of actionability in counterfactual explanations by constraining generated counterfactuals to make sure that 
variations do not change unchangeable features. ACTREC formulates the problem through mixed integer 
programming, with constraints on actionable features ensuring that valid solutions remain actionable. 
While designed for tabular data and differentiable classifiers, ACTREC can handle categorical features. In 
contrast, Kanamori et al. (2020) proposed the Distribution-Aware Counterfactual Explanation method 
(DACE), based on mixed integer linear optimization. DACE uses a loss function incorporating the 
Mahalanobis distance and the Local Outlier Factor (LOF) to evaluate the plausibility of candidate 
counterfactuals. By simultaneously minimizing distance and maintaining plausibility, DACE provides 
explanations for linear classifiers and tree ensembles, handling categorical features with one-hot encoding. 
Karimi et al. (2020) introduced the Model-Agnostic Counterfactual Explanation (MACE) approach, which 
operates on diverse tabular data with any given distance function. MACE maps the problem into a 
sequence of satisfiability problems, expressing black-box models, distance functions, and constraints as 
logic formula. By using satisfiability modulo theories solvers, MACE generates counterfactual explanations, 
facilitating interpretable insights into model predictions. Moreover, Mothilal et al. (2020) proposed Diverse 
Counterfactual Explanations (DICE), which solves an optimization problem with various constraints to 
ensure feasibility and diversity in the generated counterfactuals. DICE encourages actionability and 
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feasibility by penalizing solutions formed by counterfactuals that are too similar, thereby promoting 
diversity. It handles categorical features through one-hot encoding and adopts the Adam optimizer.  

Furthermore, Pawelczyk et al. (2020) presented the Counterfactual Conditional Heterogeneous 
Autoencoder (C-HVAE), a model-agnostic explainer for tabular data that utilizes an autoencoder for 
modelling heterogeneous data. C-HVAE does not require a distance function in the real input space, relying 
on the autoencoder to measure distances in the latent space and guide the search for counterfactuals. 
Additionally, Ramakrishnan et al. (2020) introduced SYNTH, a method for synthesizing action sequences to 
modify model decisions, combining search-based program synthesis and optimization-based adversarial 
example generation. SYNTH constructs action sequences over a domain-specific set of actions, enabling 
changes in differentiable black-box and categorical data, and it is designed for tabular data, though tested 
on simple images. Moreover, Rawal and Lakkaraju (2020) proposed the Actionable REcourse Summaries 
approach (ARES), which constructs global counterfactual explanations providing interpretable summaries 
of recourses for entire reference populations. ARES optimizes for validity and interpretability while 
minimizing changes with respect to the reference population, with initial rules provided by the user or 
extracted using Apriori. Wang and Vasconcelos (2020) developed the Self-aware disCriminant 
cOUnterfactual explanaTion method (SCOUT) for generating discriminant counterfactual explanations for 
image classifiers. SCOUT computes explanations by identifying informative pixels for the predicted class 
and uninformative pixels for other classes, obtained through an optimization process. Moreover, Zhao 
(2020) proposed FRACE (Fast ReAl-time Counterfactual Explanation), an explainer for neural network 
classifiers for images. FRACE uses a neural network architecture and minimizes a loss function accounting 
for validity and minimal perturbation, generating counterfactuals through a residual generator and 
accounting for plausibility through adversarial training. Furthermore, Carreira-Perpiñán and Hada (2021) 
presented CEODT, a Counterfactual Explanation method for Oblique Decision Trees, specifically designed 
for classification trees, including both traditional axis-aligned and oblique trees. CEODT computes exact 
solutions within each leaf region, optimizing a mixed integer optimization problem to find feasible 
counterfactuals.  

Cheng et al. (2021) introduced DECE, an interactive Decision Explorer with Counterfactual Explanation that 
provides explanations through a visualization system, retrieving multiple counterfactuals by optimizing a 
loss function for validity, distance minimality, number of changes, and diversity, with the possibility of 
specifying feature constraints for actionability. Moreover, Mohammadi et al. (2021) presented SGNCE, a 
counterfactual explanation approach specifically designed for neural networks, providing guarantees for 
minimality and coverage of returned counterfactuals through mixed-integer programming. SGNCE also 
ensures plausibility and actionability in generated counterfactuals. Additionally, Parmentier and Vidal 
(2021) proposed OCEAN, an Optimal Counterfactual ExplAiNer for tree ensembles, utilizing efficient mixed-
integer programming to search for counterfactuals and account for both plausibility and actionability. 
Kanamori et al. (2021) introduced ORDCE, the Ordered Counterfactual Explanation method, which 
accounts for asymmetric interaction among features by calculating a loss function that depends on the 
order of changing features, aiming to return counterfactuals with not only feature values but also the order 
in which they should be altered. Moreover, Karimi et al. (2021b) presented ALGREC, which uses causal 
reasoning to find recourse through minimal interventions, leveraging known causal models to ensure valid 
counterfactuals respecting causality. Furthermore, Kenny and Keane (2021) illustrated the PIECE method 
for generating contrastive explanations for CNNs working on image data, identifying exceptional features, 
and modifying them to generate plausible counterfactuals, leveraging a GAN to generate counterfactual 
images. Van Looveren and Klaise (2021) proposed CEGP, a method for Counterfactual Explanations Guided 
by Prototypes, which employs a loss function based on prototypes to guide perturbations toward 
counterfactuals that respect class distributions, accounting for categorical features by inferring distances 
between categories. In a different domain, Wu et al. (2021) introduced POLYJUICE, a general-purpose 
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counterfactual generator for textual data. POLYJUICE returns a diverse set of realistic textual 
counterfactuals, ensuring similarity and minimality while guaranteeing grammatical correctness and 
endogenous counterfactuals.  

Additionally, NNCE (Nearest-Neighbor Counterfactual Explainer), introduced by Shakhnarovich et al. 
(2008), selects instances most like the input instance and with different labels, offering simplicity and 
interpretability in generating counterfactuals for tabular data. CBCE (Case-Based Counterfactual Explainer), 
refined by Keane & Smyth (2020) from NNCE, uses explanation cases to guide the generation of 
counterfactuals, providing adaptability and customization in explanations. FACE (Feasible and Actionable 
Counterfactual Explanations), presented by Poyiadzi et al. (2020), focuses on uncovering feasible paths for 
generating counterfactuals, ensuring coherence with the input data distribution, and promoting 
actionability in the generated explanations. NICE (Nearest Instance Counterfactual Explainer), proposed by 
Brughmans & Martens (2021), offers a versatile approach to generate diverse and plausible counterfactuals 
for tabular data, considering various trade-offs in the generated explanations. Shakhnarovich et al. (2008) 
introduced TBCE (Tree-Based Counterfactual Explainer), a method that using surrogate decision trees 
trained on reference datasets to mimic classifier behaviour. By utilizing decision tree paths leading to 
different predictions, TBCE offers customizable counterfactuals for tabular data, ensuring interpretability 
and actionability in its explanations. Tolomei et al. (2017) proposed FT (Feature Tweaking) as a method to 
understand which features of a given instance should be modified to alter predictions of tree-based 
ensembles. FT ensures validity across all trees in the ensemble, providing actionable recommendations for 
transforming instances while covering the entire feature domain. Guidotti et al. (2019) presented LORE 
(LOcal Rule-based Explainer), a method that provides rule-based explanations for tabular data. By 
generating synthetic neighbours and training decision trees on them, LORE extracts factual and 
counterfactual rules, enabling interpretable and actionable insights into model behaviour.  

Waa et al. (2019) introduced FOILTREE, which generates contrastive explanations using local surrogate 
trees. By focusing on differences between decision paths leading to factual and foil outcomes, FOILTREE 
offers interpretable explanations for model predictions. Fernández et al. (2020) proposed RF-OCSE 
(Random Forest Optimal Counterfactual Set Extractor) to extract counterfactual sets from Random Forests. 
RF-OCSE ensures consensus among individual tree predictors by converting Random Forests into single 
decision trees, offering actionable counterfactual explanations for tabular data. Ribeiro et al. (2018) 
introduced ANCHOR, aiming to retrieve explanations as sufficient conditions for classification. ANCHOR 
offers an alternative approach to counterfactual explanations by focusing on defining conditions for 
predictions rather than changes to input instances. Ghazimatin et al. (2020) presented PRINCE, a 
counterfactual explainer for recommender systems. By describing possible user interactions, PRINCE 
provides explanations as minimal sets of actions on heterogeneous information networks, offering 
actionable insights into model recommendations. Kovalev et al. (2021) proposed SURV-CF to address the 
challenges of counterfactual explanation in machine learning survival models. SURV-CF offers interpretable 
explanations by reducing the problem to a optimization problem with linear constraints and employing 
Particle Swarm Optimization for survival model predictions. Ates et al. (2021) introduced COMTE, a 
counterfactual explanation method for multivariate time series data. COMTE provides explanations by 
minimizing a loss function while ensuring validity and similarity in generated counterfactuals, offering 
insights into model behaviour. Lucic et al. (2021) proposed CF-GNNEXPLAINER, a counterfactual explainer 
designed for classifiers operating on graphs. By identifying minimal perturbations to the graph structure 
that change predictions, CF-GNNEXPLAINER offers interpretable explanations for graph-based models. 
Numeroso and Bacciu (2021) introduced MEG (Molecular Explanation Generator), providing counterfactual 
explanations for graph neural networks by generating valid compounds with high structural similarity and 
different predicted properties. MEG ensures validity while exploring diverse counterfactual explanations 
through reinforcement learning. 
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Counterfactual XAI Paper Advantage 

OAE Cui et al. (2015) ILP ensures optimal solutions 

WACH Wachter et al. (2017) Balances quadratic distance terms for close to original counterfactuals 

CEM Dhurandhar et al. (2018) Uses autoencoder for plausible explanations 

CEML Artelt (2019) Offers optimization-based solutions for diverse model types 

EMAP Chapman-Rounds et al. (2019) Provides minimal disruptions for interpretable explanations 

MACEM Dhurandhar et al. (2019) Estimation of gradients for scalability 

CRUDS Downs et al. (2020) Focuses on relevant feature representations 

REVISE Joshi et al. (2019) Actionable insights respecting causal relationships 

FOCUS Lucic et al. (2019) Provides insights into non-differentiable models 

EBCF Mahajan et al. (2019) Ensures feasibility through causality in counterfactual generation 

DCE Russell (2019) Formulates linear program for coherent counterfactuals 

ACTREC Ustun et al. (2019) Handles actionability constraints with mixed integer programming 

DACE Kanamori et al. (2020) Evaluates plausibility through novel loss function 

MACE Karimi et al. (2020) Facilitates interpretable insights using SMT solvers 

DICE Mothilal et al. (2020) Promotes diversity in generated counterfactuals 

C-HVAE Pawelczyk et al. (2020) Utilizes latent space for counterfactual search 

SYNTH Ramakrishnan et al. (2020) Constructs action sequences for model decision modification 

ARES Rawal & Lakkaraju (2020) Provides interpretable summaries for entire populations 

SCOUT Wang & Vasconcelos (2020) Identifies informative pixels for discriminant explanations 

FRACE Zhao (2020) Minimizes perturbation for fast explanations 

CEODT Carreira-Perpiñán & Hada (2021) Computes exact solutions for oblique decision trees 

DECE Cheng et al. (2021) Provides interactive explanations with specified feature constraints 

SGNCE Mohammadi et al. (2021) Guarantees minimality and coverage in returned counterfactuals 

OCEAN Parmentier & Vidal (2021) Accounts for plausibility and actionability in tree ensembles 

ORDCE Kanamori et al. (2021) Returns counterfactuals with ordered feature change 

ALGRE Karimi et al. (2021b) Embeds casual reasoning for valid counterfactuals  

PIECE Kenny & Keane (2021) Generates contrastive explanations for CNN’s 

CEGP Van Looveren & Klaise (2021) Guides disruptions based on prototypes for class distribution 

POLYJUICE Wu et al. (2021) Generates textual counterfactuals with grammatical correctness 

SEDC Martens & Provost (2014) Model-agnostic, tailored for textual data 

GIC Lash et al. (2017) Handles actionable features and causal relationships 

GSG Laugel et al. (2018) Generates diverse counterfactuals for image data 

POLARIS Zhang et al. (2018) Versatile, stable, and model agnostic 

CVE Goyal et al. (2019) Provides visually plausible explanations for image classifiers 

CADEX Moore et al. (2019) Considers sparsity and plausibility for tabular data 

CFSHAP Rathi (2019) Heuristic approach based on SHAP for tabular data 

CERTIFAI Sharma et al. (2019) Utilizes a genetic algorithm for robust explanations 

PCATTGAN Arrieta & Ser (2020) Relies on adversarial examples for plausible explanations 

MOC Dandl et al. (2020) Generates diverse counterfactuals with different trade-offs 

VICE Gomez et al. (2020) Focuses on visual explanations with minimal changes 

PERMUTEATTACK Hashemi & Fathi (2020) Model-agnostic approach based on adversarial perturbation 

GRACON Kang et al. (2020) Considers internal characteristics of deep neural networks 

GRACE Le et al. (2020) Heuristic contrastive sample generation for tabular datasets 

MCBRP Lucic et al. (2020) Exploits Monte Carlo simulation for unusual properties identification 

LIME-C/SHAP-C Ramon et al. (2020) Adaptations of LIME/SHAP for counterfactual explanations 

CLEAR White & d’Avila Garcez (2020) Provides local explanations via regression coefficients 

PCIG Yang et al. (2020) Generates grammatically plausible counterfactuals for textual data 

GECO Schleich et al. (2021) Utilizes PLAF constraints for diverse and plausible counterfactuals 

NNCE Shakhnarovich et al. (2008) Simplicity and interpretability for tabular data 

CBCE Keane & Smyth (2020) Adaptability and customization in explanations 

FACE Poyiadzi et al. (2020) Ensures coherence and actionability in explanations 

NICE Brughmans & Martens (2021) Versatile approach with diverse trade-offs 

TBCE Shakhnarovich et al. (2008) Uses explanations with surrogate decision trees 

FT Tolomei et al. (2017) Maintains validity across ensemble trees 

LORE Guidotti et al. (2019) Derives rule-based insights from synthetic neighbours 

FOILTREE Van Der Waa et al. (2019) Focuses on differences for interpretability 

OCSE Fernández et al. (2020) Converts forests for consensus explanations 

ANCHOR Ribeiro et al. (2018) Provides "sufficient" conditions for classification 

PRINCE Ghazimatin et al. (2020) Offers minimal action sets for recommendations 

SURV-CF Kovalev et al. (2021) Utilizes optimization for survival model insights 

COMTE Ates et al. (2021) Balances accuracy and validity in time series 
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CF-GNNEXPLAINER Lucic et al. (2021) Identifies minimal graph perturbations 

MEG Numeroso & Bacciu (2021) Generates diverse counterfactual compounds 
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Appendix 2: DeepTurn cameras 

 

Schiphol DeepTurn department (2023) 

 

Schiphol DeepTurn department (2023) 

 

Schiphol DeepTurn department (2023)  
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Appendix 3: Distribution of event features 



69 
 

Appendix 4: Scatterplots of numeric features versus DOBT 
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Appendix 5: Residual plots of numerical features 
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Appendix 6: Residual versus fitted values plots numeric features 
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Appendix 7: Linear regression plots numeric features 
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Appendix 8: Boxplots of categorical/discrete features  
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Appendix 9: Residual plots categorical features 
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Appendix 10: Confusion matrices 
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Appendix 11: Model feature importance  
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Appendix 12: Counterfactual explanations 

  



Appendix 13: Dashboard 
 

 



 


