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Air traffic sector demand and capacity balancing is an impor-
tant process to enable safe and efficient flight execution. In cur-
rent operations, demand and capacity are determined based on
schedules and flight plans. In reality, disruptions to flights cre-
ate a different situation that may not have been anticipated by
the Air Navigation Service Provider (ANSP). Wrong demand
forecasts may cause unnecessary network regulations or ineffi-
cient flight execution. This research aims to improve air traf-
fic sector demand forecasting, by exploring machine learning-
based trajectory prediction. In light of the Trajectory Based
Operations (TBO) concept that is being developed within Air
Traffic Management (ATM) research, a trajectory-based ap-
proach is taken to improve demand forecasts. To achieve this,
the transformer neural network was identified as a suitable
generative model that can predict aircraft trajectories. Us-
ing available traffic messages from the Eurocontrol Business-
to-Business (B2B) connection, and actual trajectories obtained
from the OpenSky ADS-B repository, a successful transformer
neural network was built. This trajectory predictor could accu-
rately generate trajectories, outperforming the flight plan and
other neural network approaches by a large margin. For de-
mand prediction, the introduction of improved trajectories pro-
vided small gains that could potentially lead to more stable pre-
dictions.

ATM | Demand forecasting |Trajectory Based Operations | Transformer Neural
Network

I. Introduction

With the ever-increasing numbers of flights, ANSPs are ex-
periencing significant challenges to maintain capacity and
improve the sustainability performance within their respec-
tive airspace. ATM is concerned with managing the air traffic
and airspace, such that flights are executed safely and effi-
ciently. This includes services such as air traffic control,
navigation, information and emergency services, but also de-
mand and capacity balancing of the different airspace sectors.

Demand and capacity balancing is the process of managing
the traffic flows through an airspace block such that safe and
efficient flight operation can be guaranteed. Where demand
is the number of flights inside the sector, and the capacity is
the ability of the responsible ANSP to keep separation be-
tween flights and allow throughput. Air Traffic Control The
Netherlands (LVNL), the Dutch ANSP, currently makes de-
mand forecasts based on received flight information, amongst

which the flight plan is a very important element to estimate
the arrival time in the Dutch airspace. However, a lot of
uncertainty is present in this data. The research objective is
therefore to improve air traffic sector demand forecasting, by
exploring machine learning-based trajectory prediction. For
tactical decisions from the air traffic controller supervisor,
the demand predictions at a three-hour look ahead time are
most relevant. With the available information three hours
before the arrival of a flight, a machine learning model is
applied to generate trajectories that should give a more accu-
rate representation of the flight and as a result, increase the
predictability of air traffic demand. This study focuses on
the Dutch airspace as the area of interest and is supported by
LVNL with data and expertise.

First, in section II, an overview of the related academic ad-
vancements in the field will be discussed. Thereafter, sec-
tion III explains the chosen methodology and experiment set-
up. In section IV the results of the experiment are provided,
after which section V is a discussion on the observed out-
come. To end, section VI contains the conclusion of this re-
search paper.

II. Related Work

A. Demand Forecasting. To effectively balance the num-
ber of aircraft in an air traffic sector (demand) to the avail-
able capacity of the sector, ANSPs make forecasts on the
expected traffic numbers in the coming hours. Convention-
ally, the number of flights in the sector is determined based
on flight schedules, or flight plans. In reality, however, flights
may deviate from their planning, either through delays, re-
routing, or other disruptions. This introduces uncertainty to
the demand forecast, which may either cause unanticipated
traffic overload or loss of capacity. Könnemann [1] has made
an extensive decomposition of all factors influencing de-
mand prediction deficits for an upper area sector. Departure
time prediction was found to be the largest source of uncer-
tainty, followed by Air Traffic Control (ATC) interference,
and trajectory prediction uncertainty. As a result, numerous
research efforts have tried to improve demand predictions.
Generally, two methods can be derived from literature: The
trajectory-based approach and the aggregate approach.

The trajectory-based approach considers individual flights to
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determine when the flight is inside the sector. This method in-
cludes conventional demand prediction based on flight plans,
but has recently seen new developments. Gilbo & Smith
[2] were able to reduce the demand prediction error of US
air traffic sectors with a regression model. The model im-
proved the prediction error variance by about 0.5 aircraft,
while still relying on flight plans only. Fernández et al.[3]
predicted 4D trajectories using a Hidden Markov Model and
used these subsequent trajectories to determine sector de-
mand. The advantage of using trajectories is that it gives
insight into which flights contribute to the demand. Fernán-
dez et al. demonstrated that by imposing delays on the start
time of trajectories, demand and capacity can be optimised.
Xu, Prats and Delahaye [4] take this one step further and also
optimise demand and capacity with variable route options or
different sector configurations. The optimisation was proven
very effective with minimal imposed delay. This clearly
shows that trajectory-based demand prediction is a versatile
solution.

Aggregate demand predictions do not rely on individual
flights, but consider the entire flow of traffic through the sec-
tor. Sridhar et al.[5] and Menon et al.[6] modelled blocks of
airspace as control volumes that convey a traffic flow. The re-
sult is a linear discrete-time dynamic system, which can po-
tentially be upgraded to an automated control system. Ma
et al.[7] created a spatiotemporal graph network to repre-
sent traffic flowing through the air traffic sectors in France.
Passing flow through the graph network and propagating via
the message-passing algorithm allows the prediction of traffic
numbers for each sector. Significant improvements have been
reached, especially on the 1-2-hour look ahead time com-
pared to other neural networks. Aggregate models generally
show better predictive performance in experimental studies,
but are not knowingly applied in operational environments
today.

B. Trajectory Prediction. Given that this research builds
on the TBO framework, the trajectory prediction method-
ology is fundamental to the success of the research. Two
global methods can be distinguished when investigating tra-
jectory prediction. Classical trajectory prediction is based on
a mathematical model that physically calculates the future
state based on the current state, intent and constraints. At
the heart of such models is usually a kinetic or kinematic
model that computes the motion of the aircraft according
to Newtonian physics. Examples of this can be the Ope-
nAP WARP model created by Sun [8], or the Eurocontrol
BADA model. Although very successfully applied in op-
erational environments, a pitfall of model-based Trajectory
Predictor (TP) is the required set of constraints and intent
information. Especially for longer-term predictions, a lack of
right intent information can reduce prediction accuracy dras-
tically. Given the look-ahead time of 3 hours that is chosen in
this research, the data-driven trajectory prediction approach
is a more suitable option.

In recent academic works, trajectory prediction has shifted

towards data-driven methods, relying on the vast amount
of data that has become available. Especially since the in-
troduction of Automatic Dependent Surveillance - Broad-
cast (ADS-B) equipment, aircraft surveillance data has
become more accessible. Furthermore, machine learning
methodology has developed significantly, showing impres-
sive advances in various fields of research. In trajectory
prediction, recurrent neural networks are some of the latest
applications. Overkamp [9] for example, has shown that
Long-Short Term Memory Cell (LSTM) networks can ac-
curately predict trajectories in free-route airspace up to 20
minutes look ahead time. In his research, the versatility of
the network was shown by including both spatiotemporal
traffic density data as well as temporal trajectory informa-
tion. Liu & Hansen [10] proved that LSTM networks can
also be applied to generatively predict trajectories on longer
look-ahead times. Using the last filed flight plan and encoded
spatiotemporal weather data, the model predicts entire trajec-
tories for a single city pair. With average horizontal errors
of around 50NM and vertical errors of 2800ft, the predictive
performance of the model is a reasonable improvement over
the flight plan accuracy. When making demand forecasts,
however, flights are not limited to a single city pair. Rozen-
daal [11] showed that a bi-directional LSTM network may
have the potential to accurately predict trajectories for flights
towards Schiphol airport.

The previous section shows that LSTM neural networks have
been extensively tested in the trajectory prediction domain,
but are not the only successful data-driven method. For ex-
ample, clustering is frequently applied to the trajectory pre-
diction problem. Various studies use clustering to pre-group
trajectories and train a consecutive predictor. Examples of
this are the methods proposed by Fernández et al.[3], and
Wu et al.[12]. Fernández et al. clustered flight plans with
the K-NN method based on distance and weather metrics.
After having grouped the flight plans into 5-8 clusters, the
dimensionality is reduced significantly. A Hidden Markov
Model was then applied to each cluster, allowing for better
convergence. Wu et al. used a similar approach, but used
a K-medoid clustering approach and convolutional-LSTM
neural network. In both cases, the predicted trajectory out-
performed similar methods without clustering the input.

C. Machine learning. Although various machine learning
models have been applied to trajectory and demand pre-
diction, new methods have been found in other academic
domains, which can be relevant to this research. One of
the latest developments is the transformer neural network as
proposed by Vaswani et al.[13]. Similar to recurrent neu-
ral networks, this model was originally designed for lan-
guage translation tasks. Using the self-attention mechanism,
computations could be parallelised. Classical recurrent net-
works such as the LSTM network rely on sequential cal-
culations, which are much more resource-intensive. The
encoder-decoder transformer model performs similar or bet-
ter on the English-German and English-French translation
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A Input data

tasks with significantly lower training costs. This break-
through model resulted in many variations of the model such
as BERT & GPT, which have shown outstanding results in
various natural language processing tasks. Moreover, bio-
logical modelling advancements have also been conceived
by transformer neural networks as surveyed by Zhang et.
al.[14]. During this research, no direct applications of the
transformer neural network were found in the domains of
aircraft trajectory prediction, but Wang et al.[15] and Achaji
et al.[16] did apply a transformer model to road traffic and
pedestrian trajectory prediction respectively. Furthermore,
the attention mechanism has been exploited in part for traffic
flow forecasting. Ma et al.[7] have successfully implemented
the attention mechanism in a graph neural network for de-
mand prediction of the French airspace sectors.

Although the performance of the transformer neural network
is groundbreaking, varieties of the attention mechanism are
being explored to reduce computational load even further. A
recent finding in this field is centred around token mixing
algorithms. Because of the scaled dot product, the atten-
tion mechanism complexity increases quadratically with the
length of the input sequence. Token mixing algorithms find
substitutes for this operation. Lee-Thorp et al.[17] for exam-
ple, introduced a Fast Fourier Transformation layer to convert
the input signal to a frequency vector. This is a very fast oper-
ation, yet allows the network to find internal correlations and
dependencies. Alternatively Tolstikhin et al.[18] applied a
multilayer perceptron instead of attention. This type of feed-
forward neural network also mixes the signal tokens, without
losing information. Both methods show performance on par
with current state-of-the-art neural networks. Lee-Thorp et
al. showed that their model performed almost as well as
BERT on text classification tasks, yet computed a sample
more than twice as fast. This makes token-mixing algorithms
an interesting path of development.

III. Methodology
The methodology of this research is to create demand fore-
casts via a trajectory prediction approach. Based on related
academic work, and the available data, a transformer neu-
ral network is proposed to generate trajectories. First, the
available data and processing steps are discussed. Thereafter,
the proposed trajectory prediction models are explained. In
the fourth section, the training process is explained. Con-
secutively the demand forecasting model is introduced, after
which the experiment setup is presented in the final section.

A. Input data. Because this research is relevant to opera-
tional decision-making, the selected input data must be read-
ily available in the operational domain. For this reason, the
following data sources were consulted to construct the input
and testing datasets:

1) Eurocontrol B2B flight messages: The Eurocontrol B2B
connection sends flight status messages to LVNL containing

information such as a flight plan, departure status, origin,
destination, aircraft registration, and airline. In addition, it
may also include timings amongst which the Estimated Off
Block Time (EOBT), taxi time & Estimated Time of Ar-
rival (ETA). An anonymised data excerpt can be found in
Appendix A. This data is currently used to make demand
forecasts for the coming 3-5 hours and has a high level of
integrity. This makes it a suitable starting point for the model
input. For this research, flight messages from May 2021 are
available. This is during the COVID period, which means
lower traffic figures that could result in different flight be-
haviour. Nonetheless, it is expected that this dataset is still
suitable for assessing the capabilities of the model.

2) OpenSky ADS-B trajectories: To train a model to predict
trajectories, the actual flown trajectories must be specified.
Because LVNL does not have surveillance data for complete
origin-to-destination flights, this data must be sought else-
where. ADS-B surveillance data is tracked and stored by
several contributors on the collaborative OpenSky network.
This research makes thankful use of this data that spans many
parts of the globe. This data includes frequent 4D position
reports, but also includes aircraft state parameters such as
origin, destination, aircraft id, speed and heading. Although
not all flights are present in the dataset, and not every trajec-
tory is complete, this dataset is still very suitable for training
the trajectory predictor model.

3) ERA5 meteorological data: Various studies have shown
the importance of including meteorological conditions in tra-
jectory prediction models [10]. Hence, this will be used as
part of the input dataset. The European Centre for Medium-
Range Weather Forecasts (ECMWF) historic database pro-
vides meteorological parameters such as wind, temperature
and precipitation on pressure levels from 1000-1hPa. The
spatial resolution of this data is 31km, and spans globally.
For this research, the atmospheric parameters are taken at
timesteps 0:00, 06:00, 12:00, and 18:00 UTC, for the pres-
sure levels from 1000hPa to 125hPa. The northerly and east-
erly wind components are taken, as well as the temperatures,
as it is expected that these values influence the trajectory
most significantly. Convective weather is also considered an
important contributor, but this is left out because of comput-
ing limitations.

4) Airspace data: To make demand forecasts, trajectories
must be overlaid with the relevant airspace block, to test
when and where the airspace is crossed. The airspace lay-
out is taken from the Eurocontrol Network Manager (NM)
Demand data repository.

B. Data processing. Before using the data in the model,
it must first be prepared and merged into a format that is
suitable for machine learning purposes. This research makes
use of the PyTorch machine learning library, hence the final
dataset must be provided in the tensor format. To achieve
this, first, all flights are resampled to a temporal resolution
of 4 minutes and are zero-padded to a fixed length of 220
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samples. Secondly, the weather conditions along the flight
path are added to the B2B flight messages. Consecutively,
flight messages must be matched to the ADS-B trajectory, to
train the model with the right target trajectory. This is done
based on the corresponding flight number and departure time.
Because of data size and computing resources, this research
is limited to a single look-ahead time. As a result, the last
available flight message 3 hours before the actual arrival is
taken as model input. The third step is to format the data,
which will be explained in more detail below. Finally, the
data is split into a training and test dataset. The test dataset
consists of 10 full days of traffic randomly sampled from
the entire dataset. Complete days are required, because not
only trajectory prediction performance is evaluated, but also
a complete demand forecast must be analysed. Demand fore-
casting error can only be determined using a bulk of flights,
which required a larger portion (30%) of the available dataset
than a conventional 80-20 data split. As a result of the smaller
remaining dataset, it was decided that this is used entirely for
model training. This means that no validation dataset can be
used to evaluate performance during training. Alternatively,
training is done in steps with intermediate tests to capture
potential overfitting.

Providing data in the right format is an important aspect of
machine learning. Because mathematical models do not un-
derstand the physical meaning of variables, everything has to
be sized and shaped into numbers relatable to the network.
Preferably, to keep the network bounded, all input variables
are normalised to values between 0-1. This can be done with
min-max normalisation, as shown in Equation 1.

xnorm = (x−xmin)
(xmax−xmin) (1)

Nonetheless, normalising every parameter is not always
straightforward. A good example is the coordinate system
used to define flight plan and trajectory locations. The spher-
ical coordinate system presents trajectories on a non-linear
relational basis and is therefore very challenging to capture
by a neural network, as was argued by Overkamp [9] & Tran
et al.[19]. Hence, the trajectories are first transferred to an-
other coordinate system. The coordinates of the flight plan
and ADS-B trajectory are expressed in terms of latitude (ϕ)
and longitude (λ) in degrees and height (h) in feet. This can
be converted to the Earth-Centered, Earth-Fixed (ECEF) ref-
erence frame using Equation 2 and Equation 3. Where a
and b are the equatorial and polar earth radius respectively.
Consecutively, these coordinates can be transformed to the
East North Up (ENU) reference frame using Equation 4. In
this equation, Xr,Yr & Zr are the reference location which
is set to Amsterdam Airport (ICAO: EHAM). Finally, the
flight plan is normalised from the ENU x and y coordinates
to a range between 0 (origin) and 1 (Amsterdam Airport
Schiphol), using transformation matrix A derived from Equa-
tion 5. Note that the transformation is first made to a range
between 1 and 2, and then shifted. This is required because
a unique inverse matrix of the 0 and 1 range does not exist.

The resultant transformation matrix is then used to normalise
the target ADS-B trajectory, and also to convert the output
signal back to an actual output trajectory. The advantage of
normalising trajectories is that it may eliminate the need for
other dimensionality reduction steps such as clustering.

Xc = N(ϕ)+hcosϕcosλ

Yc = N(ϕ)+hcosϕsinλ

Zc = N(ϕ)+hsinϕ

(2)

N(ϕ) = a2√
a2cos2ϕ+ b2sin2ϕ

(3)

x
y
z

 =

 −sinλr cosλr 0
−sinϕrcosλr −sinϕrsinλr cosϕr

cosϕrcosλr cosϕrsinλr sinϕr

Xc−Xr

Yc−Yr

Zc−Zr


(4)

A =
[

xorigin yorigin

xEHAM yEHAM

]−1 [
2 1
1 2

]
(5)

Fig. 1. Reference frames used for geographic positions: Yellow is the spherical
coordinate system. Blue is the ECEF reference frame. Green is the Cartesian ENU
reference frame.

Besides normalisation, some variables require other data for-
matting steps. Static, non-time dependent variables such as
origin airport, airline operator and aircraft type for example
must be encoded numerically. Integer encoding was selected
for these variables, representing each unique variable as an
integer value. Moreover, temporal static data such as the day
of the week, or departure time are cyclically encoded. This
technique accounts for the flaws of min-max normalisation
in cyclical data. For example, Sunday and Monday are very
close time-wise, but after integer encoding, Monday will re-
ceive a value of 0 and Sunday will receive a value of 6. For
this reason Equation 6 is applied to represent cyclical patterns
in the data. Note that it results in two variables, as a single si-
nusoidal encoding could yield the same result for two values
due to symmetry. As a result, the final dataset and performed
processing are given in Table 1.

Hsin = sin( 2πH

max(H) )

Hcos = cos( 2πH

max(H) )
(6)
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C Trajectory prediction model

Table 1. Overview of the input and target tensor variables, including the applied
data processing steps that were taken. Note that the target tensor is presented as
the difference between the actual trajectory and the flight plan. During training, it
was found that this resulted in considerably better results compared to a target that
is the actual trajectory.

INPUT TENSOR TARGET TENSOR
Time Series Feature Processing Dim Time Series Feature Processing Dim
FPL duration timestamp - 220 ADS-B duration timestamp - 220
FPL latitude Trajectory norm. 220 ∆(ADS-B, FPL) latitude Trajectory norm. 220
FPL longitude Trajectory norm. 220 ∆(ADS-B, FPL) longitude Trajectory norm. 220
FPL altitude Min-Max norm. 220 ∆(ADS-B, FPL) altitude Min-Max norm. 220
North wind
component Min-Max norm. 220

East wind
component Min-Max norm. 220

Air temperature Min-Max norm. 220

Static Feature Processing Dim
Estimated take-off time Cyclical Encoding 2
Day of the week Cyclical Encoding 2
Pre-departure delay Min-Max norm. 1
Origin airport Integer encoding 1
Aircraft Type Integer encoding 1
Aircraft Operator Integer encoding 1

C. Trajectory prediction model. Based on the literature
survey, the transformer neural network was selected as the
most suitable candidate for the trajectory prediction task.
The original transformer neural network was developed by
Vaswani et al.[13], and consists of an encoder-decoder struc-
ture as shown in Figure 2. The left side of the figure shows
the encoder and the right column shows the decoder. For
the trajectory prediction task, the original transformer had to
be adapted slightly, which will be explained in more detail.
Nonetheless, this was kept to a minimum in order to properly
evaluate the potential performance of the transformer net-
work. Looking over the elements of the transformer neural
network in Figure 2, the encoder input is first processed by a
linear input embedding layer. Secondly, a positional embed-
ding is added such that the model can relate between relative
positions of input tokens. The positional encoding is sampled
from a sinusoidal relation as shown in Equation 7.

Fig. 2. Schematic overview of the transformer neural network as proposed by
Vaswani et al.[13].

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(7)

The encoder layer that follows consists of three types of sub-
layers: A multi-head attention layer, an addition & normali-
sation layer, and a feedforward layer. As the scheme shows,
the input signal is duplicated to a bypass channel for each
functional layer, and added afterwards, which makes sure that
the model does not suffer from vanishing or exploding gradi-
ent effects. The multi-head attention mechanism is presented
in more detail in Figure 3, where (a) shows the attention
mechanism, and (b) is the multi-headed attention layer. The
input signal is duplicated into the keys (K), queries (Q), and
values (V ) signal. The keys and queries are parsed through a
matrix multiplication layer, after which the outcome is scaled
with the signal dimension (dk), masked (optionally), and
taken through a soft-max operation. The dot product of the
resultant matrix and the values from the original signal are
taken as the final attention outcome. Equation 8 shows the
mathematical expression of attention. In multi-headed atten-
tion, the attention layer is repeated in parallel h times, where
h is the number of heads. This is a network design parameter,
which was set to 8 in the original transformer. The number of
encoder layers can also be freely determined but was set to 4
in accordance with the original transformer.

Fig. 3. (a) Schematic representation of the attention mechanism. (b) Multi-headed
attention as applied in the original transformer neural network [13].

Attention(Q,K,V ) = softmax(QKT

√
dk

)V (8)

When looking at the decoder layer, various elements are sim-
ilar to the encoder structure and need no further clarification.
However, two primary differences are apparent. The signal
that enters the decoder in the original transformer is the out-
put signal shifted to the right and masked. This allows the
model to auto-regressively complete the signal, similar to re-
current neural networks. Furthermore, the second multi-head
attention layer in the decoder is different, because here the
keys and queries are taken from the encoder output signal,
whereas the values are obtained from the decoder internal
signal. After the multi-headed attention layer, a linear layer
is used to process the decoder signal into a signal of the
desired shape. The final soft-max element is used to con-
vert this signal to a probabilistic scale. In the original use
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case, the highest probability value determined which word
was selected from the embedding space. For trajectory pre-
diction, this operation is removed because the output can
directly be translated into a trajectory via the transformation
matrix that was used to normalise the input data. This in fact
acts as the embedding space. The number of decoder lay-
ers in the original transformer is determined at four, but this
hyper-parameter can be changed when iterating on the model
architecture. The final model architecture can be found in
Appendix B

Because of the desired critical look-ahead time of 3 hours for
demand predictions, most flights are not yet airborne. This
poses the problem that flights must be predicted without any
actual trajectory data points available. It was therefore de-
cided to build the trajectory prediction model primarily for a
generative case, relying on flight plan input for both encoder
and decoder. Nevertheless, an alternative iteration of the
model is made where the transformer is trained for both gen-
erative as well as regressive use cases. In this auto-regressive
model, the encoder input signal also receives the flight data
points that are available at that moment.

Besides the classic transformer neural network, also an
adapted version will be created based on empirical testing
and evaluation of different transformer neural network lay-
outs. In order to compare the results of the transformer neu-
ral network, simple trajectory predictors are built based on a
variety of machine learning methods. The test cases include
an LSTM network, and a feedforward neural network. Each
of these networks will have 4 layers with 2048 neurons. This
corresponds to the layer complexity of the classic transformer
neural network, hence allowing equal comparison.

D. Model training. After establishing the model layout and
parameters, the training phase can begin. Neural networks
have variable weights or parameters that each partly con-
tribute to the outcome of the network. With a cost function,
the error of the model can be calculated. Via error back-
propagation, the specific gradients of each weight can then
be determined. The PyTorch library is specifically designed
to efficiently apply back-propagation and has several optimi-
sation algorithms available to update the weights accordingly.
As a result, there are a lot of variables that can be specified
to enhance training, which will be explained in this section.

First of all, a cost function is required that calculates the
model error. For the trajectory prediction problem, a custom
loss function is specified based on requirements and iterative
modelling experience. The cost function is given in Equa-
tion 9 and Equation 10. Here λ denotes the root mean square
error for a given part of the output data or derivative thereof.
The target variable y is set to be the difference between the
filed flight plan points and the actual trajectory. It is found
that this gives more stable trajectory prediction results than
directly predicting the actual trajectory. As a result, the fi-
nal output vector of the model (ŷ) must be added to the input
signal to get the actual predicted trajectories. W denotes the

weights that were assigned to the specific error contribution
in the loss function. These weights were determined empiri-
cally to emphasise certain parts of the trajectory more during
training. Table 2 gives the values of the weights in the cost
function. The optimiser used is the Adam optimiser, and the
model is trained on an RTX3090 GPU.

λ = RMSE(ŷ−y) (9)

L = λ∗W1 +λ′ ∗W2 +λalt ∗W3 +λbegin ∗W4+
λend ∗W5 +λcruise ∗W6 (10)

Table 2. Loss function weights

Weight Value Description
W1 10 Entire trajectory error
W2 10 Derivative trajectory error
W3 10 Altitude error
W4 3 First three datapoints error
W5 5 Final 20% of trajectory error
W6 2 50-70% of trajectory error

E. Demand forecasting. Air traffic sector demand can be
defined as the measure of traffic occupation or traffic situa-
tion complexity in a specific airspace block during a given
time window. Within this research, the simplistic definition
of traffic occupancy count is used as demand. To predict the
demand of an airspace sector, all crossing flights during the
desired time window must be available. For this study, the
subject area is the Dutch Flight Information Region (FIR).
The traffic passing through this airspace is primarily depen-
dent on flights to and from Schiphol, and other airfields in the
Netherlands, but also a portion of crossing traffic is present.
Generally, three sources of traffic contribute to the demand:
arrivals, departures and crossing flights. Because the FIR
reaches up to flight level 245, crossing flights to airports out-
side the FIR are not a significant contribution, and are there-
fore left out of scope. Furthermore, based on a preliminary
data survey and the research by Könnemann [1], it could be
concluded that demand created by departing flights is almost
entirely dependent on the take-off time prediction, especially
because most departures in this airspace come from airports
located within the FIR. As a result, also departures are left
out of scope. Hence, only arriving flights in the Dutch FIR are
considered for evaluation with the trajectory-based approach.

To predict the FIR demand, it must be known when flights
are inside the sector. Algorithm 1, shows the logic applied
to obtain the demand from flight objects. Conventionally the
demand is calculated via a flight plan defined in 4 dimen-
sions: latitude, longitude, altitude and time. The first phase
determines the entry and exit times of traffic in the airspace
block. As this research is constrained to arriving flights only,
an average sector transit time is taken to determine the exit
time. This is calculated to be 25 minutes based on the ADS-B
trajectories. This assumption is required because both flight
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plan and predicted trajectories do not have the required fi-
delity to accurately predict the complex Terminal Manoeu-
vring Area (TMA) vectoring behaviour in this airspace. Av-
erage transit times are found to be reasonably accurate and
do still allow a fair evaluation of the TP performance impact.
The second phase of Algorithm 1 shows how the demand is
calculated by counting the entering and exiting flights with a
sliding window.

Algorithm 1 Demand prediction
ft = [p1,p2, ...,pT ];pt = [lat, lon,alt, t] ▷ 4D flight
F ← f ▷ Set of flights
S ▷ Airspace
At ▷ Arrival times
Dt ▷ Departure times
Tavg ▷ Average time in sector
Twdw ▷ Demand window time
Tstart ▷ Start forecast time
Tend ▷ End forecast time
Yt ▷ Demand forecast
Y0 ▷ Initial demand at start time

Phase 1 – Determine FIR arrival time

for ft in F do
for pt in ft do

if pt[lat, lon,alt] in S then
At← pt[t]
Dt← pt[t]+Tavg

break
end if

end for
end for

Phase 2 – Compute demand

t0 = Tstart

t1 = t0 +Twdw

while t1 <= Tend do
Awdw =

∑n
0 At[t > t0&t < t1]

Dwdw =
∑n

0 Dt[t > t0&t < t1]
Yt← Y0 +Awdw−Dwdw

Y0 = Yt

t0 = t1
t1 = t1 +Twdw

end while

F. Experimental set-up. To evaluate the suitability of the
proposed transformer model, both the trajectory prediction as
well as the demand forecasting performance must be tested.
For this, different experiments are designed in which the
transformer models are tested against the conventional flight
plan-based approach and the feedforward and LSTM neural
networks. The validation dataset consists of 10 full days of
traffic that are randomly selected from the month of available
data. For the trajectory prediction, this means 2839 flights
can be used to assess the TP performance. During training,

the predictive accuracy is measured through the loss function
(Equation 10). A lower score means a closer correspondence
to the target trajectory. However, the loss score is designed
specifically to train the model and is not a universal metric
to measure trajectory predictive performance. This makes it
less suitable for validation. In the experiment, lateral pre-
dictive accuracy is measured in along-track, cross-track and
horizontal error, as shown in Figure 4. In this research, only
the airborne part of the flight is modelled, which means that
all trajectories take off at t0. The errors are then calculated
at each timestamp, comparing the actual trajectory to the pre-
dicted trajectory. Similarly, the altitude difference at each
timestamp is evaluated. The mean absolute error for each
metric is taken over the entire trajectory. Another metric that
is important to compare is the total trajectory distance, as it
shows whether or not the predicted trajectory is globally co-
herent. In the experiment, the error distribution of the differ-
ent models will be compared to the baseline trajectory which
is the flight plan.

Fig. 4. Horizontal error metrics for trajectory prediction.

The demand prediction experiment considers the predicted
trajectories to determine the expected demand in the Amster-
dam FIR via Algorithm 1. Arrival time is one of the driving
variables, hence this is an important metric to consider. The
evaluation of arrival time will be two-folded: Since the pre-
dicted trajectories are trained based on aligned take-off times,
there is no pre-departure delay predicted by the TP model.
This was a considerate design choice because ground-based
delay has a significantly different complexity than airborne
delay. This was expected to introduce a lot of uncertainty
into the model had it been included, while also requiring
an architectural change for both the model and data format.
Because of this, the trajectory predictor model generates a
trajectory that starts at the given departure time in the in-
put dataset. The predictions and actual flights are therefore
compared based on flight duration up to the FIR arrival time.
This metric is most important to determine the impact of
the airborne element on demand forecast. However, when
predicting demand, absolute predicted arrival times are the
input, hence the absolute arrival time prediction accuracy is
evaluated in the experiment as well.
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Ultimately, demand forecasts are the most important metric
for tactical decision-making. Hence, these are pivotal to eval-
uate in the experiment as well. In current operations, the de-
mand window is 20 minutes, and it is renewed every 5 min-
utes. As a result, this experiment considers the same window
size and refresh rate. The demand predictions for the 10 days
in the test dataset are compared to the actual demand. It is
to be noted that this research is scoped to predictions for the
situation 3 hours ahead only, and that some flights with lim-
ited input or actual trajectory data are filtered out. Hence,
the results are not an operational demand forecast, but only
an assessment of the 3-hour look-ahead time. However, since
this research is constrained to pre-departure generative trajec-
tory predictions, a direct comparative analysis of the demand
forecasting performance can still be made.

IV. Results
After training several model varieties sufficiently, the model
performance can be assessed. This section presents the re-
sults of the developed transformer neural network, compared
to other methods. In the first subsection, the trajectory predic-
tion performance is assessed. The second subsection shows
the performance of the model when used to forecast air traffic
demand.

A. Trajectory prediction performance. Before showing
the predictive capabilities, a summary of the model train-
ing efforts is given in Table 3. With the loss values that
were found, it can be expected that the improved transformer

seems to be the best-performing model. Moreover, this model
also trains relatively fast and is stable up to 2500 epochs.

Table 3. Model training results

auto-regressive
TF

Improved
TF

Classic
TF LSTM Feed-

forward
Trainable

parameters 24E6 24E6 30E6 117E6 17E6

Time per
epoch [s] 33 32 37 39 16

#epochs
trained 2500 2500 1600 500 200

Final
loss 35 30 39 48 65

Overfitted No Yes No Yes Yes

Although training results are important to assess model per-
formance, the experiment on the test dataset will show
whether or not the model is capable of improving trajectory
predictions. During the first analysis of the experiment, it
was found that none of the models produced accurate tra-
jectory predictions for long-haul flights. This limitation was
found to be especially relevant for flights longer than 6 hours,
which make up approximately 30% of the dataset. therefore
it was decided to only include flights that have an estimated
flight time below this threshold. The implications of this are
further discussed in section V. The final results after having
applied this filter are given below. In Figure 5 the mean abso-
lute along-track, cross-track and horizontal error distribution
are shown. Figure 6 presents the mean altitude error. Finally,
Figure 7 shows the total trajectory distance error.

Fig. 5. Distribution of the lateral trajectory prediction error, where the mean absolute error is taken for every individual flight.

Fig. 6. Mean absolute altitude error of the different TP models. Fig. 7. Mean total trajectory distance error of the different TP models.
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B Demand forecasting performance

When comparing the different models to the predictive per-
formance of the flight plan, it can be noted that the feed-
forward model has significant difficulty in predicting trajec-
tories. This is to be expected because feedforward neural
networks are not usually applied to sequential data struc-
tures. The LSTM neural network shows some improvements
compared to the flight plan, but during training, it was found
to be sensitive to overfitting. After 500 epochs the train-
ing was stopped, because validation results became worse.
The classic transformer neural network was not sensitive to
overfitting but was slower to converge. The final model was
trained to 1600 epochs until the loss stabilised, however, no
signs of overfitting were found during intermittent valida-
tion. The transformer clearly outperforms the three baseline
models, with a lower mean error as well as a reduced error
distribution. Only for the global distance attribute all ma-
chine learning models fail to reduce the mean error, hinting
at a small number of trajectories that have very large errors.
This is not uncommon for a data-driven model and does not
affect the majority of predictions.

Based on literary findings and the obtained results from the
three baseline models, the semi-optimised transformer neu-
ral network was created through iterative training of various
model architectures. In this network, the decoder complex-
ity was reduced to a single layer only, as it was found that

the level of complexity in the data was not easily captured
through the auto-encoder structure. Yet a linear pipeline per-
formed better and could be trained further. Moreover, the en-
coder complexity was increased to 6 layers, and the final out-
put block was extended with a linear and relu activation layer.
The architecture of the model can be found in Appendix B.
The results of this model are a significant improvement from
the baseline models. Predictive accuracy both horizontally
and vertically improved to a lower median error and better
distribution. This shows that the transformer neural network
is very capable of explaining the differences between the filed
flight plan and actual flight execution. Looking at the altitude
predictions, when observing individual trajectories, most of
the errors are reduced by more accurately predicting climb
and descend phases. The cruise phase prediction is reason-
able, but here the flight plan is usually found to still be a bit
more accurate. An example of a predicted trajectory is shown
in Figure 8. Finally, the improved transformer was adapted
to an autoregressive variant that is capable of extrapolating
future data points of an already airborne trajectory. Although
still providing some improvements in TP accuracy, the model
failed to surpass the accuracy of the fully generative models.
However, the presented trajectory prediction improvements
are overall very significant, especially for the improved gen-
erative transformer neural network.

Fig. 8. Example of a prediction for a flight between Milan and Amsterdam. The predicted trajectory is compared to the filed flight plan and the actual trajectory.

B. Demand forecasting performance. With the observed
increase in trajectory prediction accuracy, it is to be expected
that demand forecasts can benefit from more accurate predic-
tions of aircraft entering the target airspace. Demand fore-
casting performance is measured with a variety of metrics
amongst which the flight duration time up to FIR entry, ar-
rival time and demand. The validation dataset includes 10
days of predicted and actual trajectories that are used to eval-
uate the performance. First, because only airborne segments
of flights are considered, the predicted flight duration times
up to FIR entry must be evaluated. This shows whether or
not the TP model is likely to make an improved arrival time

estimate, and henceforth is suitable for demand forecasting.
These results are shown in Figure 9. As expected, all models
that showed improved TP accuracy also have a better estimate
of the duration of the flight than the flight plan. Secondly, the
absolute arrival times at the FIR boundary are calculated with
the duration of the flight and the estimated take-off time from
the B2B message. These absolute arrival times are then com-
pared to the actual arrival times from the ADS-B trajectories.
The absolute arrival time prediction errors are presented in
Figure 10.
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Fig. 9. Error between actual flight duration and the predicted flight duration up until
FIR entry.

Fig. 10. Error between actual FIR arrival time and the predicted arrival time.

The predicted arrival time of flights by the various models
does not show the same increase in accuracy as observed in
the flight duration evaluation. This is partly expected because
the take-off time uncertainty is known to be a considerable
factor, which was argued by Könnemann [1] amongst oth-
ers. However, some improvements can still be observed,
as the spread of errors is reduced to some extent with the
transformer models. Finally, the demand forecasts of each
method are evaluated. In current operations, LVNL considers
the demand forecast at 3 to 5 hours ahead most valuable. This
allows the ANSP to apply the required capacity resources or
to regulate incoming traffic. For this reason, the dataset is
constrained to B2B messages at 3 hours before the actual ar-
rival of the flight. The demand forecast results of all different
trajectory predictor models are presented in Table 4.

Table 4. Demand forecast model results. Measured by the difference in the number
of flights that were predicted to enter the airspace and the actual number of flights.

RMSE
[flights]

MAE
[flights] R2 Std. Deviation

[flights]
FPL 1.83 1.12 0.79 1.83
Autoregressive TF 1.73 1.07 0.81 1.73
Improved TF 1.66 1.04 0.82 1.66
Classic TF 1.78 1.10 0.80 1.78
LSTM 1.83 1.13 0.78 1.83
Feedforward 2.1 1.32 0.72 2.09

Comparing the demand errors from the flight plan-based
method to the tested TP models, it becomes clear that most
models do not provide any significant improvements. The
feedforward model performs poorly, which was expected
based on the trajectory prediction accuracy. The LSTM
model did have slightly better TP accuracy compared to the
flight plan, but these improvements do not lead to any bene-
fits in the demand forecasting case. The transformer neural
networks however do show slightly improved demand fore-
casts. Particularly, the improved transformer shows a more
significant jump over the flight plan-based method. The im-
proved transformer model has a root mean square error that is
10% lower than the flight plan-based approach. Compared to
the results of the other models, this is the only significant im-
provement, given the dataset size of 10 days. When looking
at the demand error distribution in Figure 11, it becomes clear
that the improved transformer marginally reduces the peak er-
rors. Hence, the improved trajectories potentially provide a
more stable demand forecast. Nevertheless, the differences
are very small. To further clarify the results, Figure 12 shows
the demand forecast for an entire day of traffic. The predic-
tions of the traffic peaks seem to be less erroneous compared
to the flight plan-based approach, which is a desirable im-
provement. The remaining demand forecast figures are pre-
sented in Appendix D

Fig. 11. Distribution of predicted demand error for the flight plan and the improved
transformer approach.

Fig. 12. Example of predicted demand on May 19 2021, where each bin is pre-
dicted with a 3-hour look-ahead time.
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A Suitability of generative machine learning methodology to trajectory prediction

V. Discussion
In this discussion, the results of the proposed machine learn-
ing models are evaluated in both trajectory prediction and
demand forecasting. First, the suitability of the results con-
cerning the trajectory and demand prediction domain are dis-
cussed. Secondly, the implications and limitations of the cho-
sen methodology are considered. Finally, recommendations
for continuing these research efforts will be presented.

A. Suitability of generative machine learning method-
ology to trajectory prediction. When examining the re-
sults of the trajectory prediction models, it was observed that
the generative approach failed to predict accurately when
flight time exceeded 6 hours. This can be explained by the
pre-processing steps taken, because all flights are normalised
between 0 and 1. This means that the spatial resolution
is reduced for flights with more data points. A different
normalisation approach was tested, which normalised tra-
jectories over the total trajectory distance, but this did not
lead to a model that converged during training. Nonethe-
less, the performance of the predictor for flights below the
6-hour threshold was found to be very good. As explained
in the results, the feedforward neural network failed to accu-
rately predict trajectories, which is not unexpected given the
sequential nature of the input data. The LSTM network per-
formed well, but the transformer and improved transformer
both delivered even better results, proving that a generative
data-driven approach can bring a lot of value to long-term
trajectory prediction problems. The auto-regressive model
was expected to provide even better results, but this did not
prove to be the case. This can be partly explained by the
fact that most flights within the 6-hour duration filter did not
have many airborne data points, meaning the model does
not receive much contextual data. However, it could also be
that the model architecture was chosen wrongly. During the
design phase, it was found that the transformer is difficult to
train and can converge much better or worse with a different
layout. It is therefore believed that the generative model can
be optimised further in the next iteration. When placing the
results into an academic context, Liu & Hansen [10] also cre-
ated a generative LSTM neural network to predict trajectories
on a single city pair with a flight duration of around 3 hours.
Although differences exist, a comparison in TP accuracy
can still be drawn. Liu & Hansen obtained a mean absolute
horizontal error of 50 nautical miles and a vertical error of
2860ft. The proposed transformer model outperforms this
approach on a large set of diverse flights. With the improved
transformer reaching a mean absolute horizontal error of 16
nautical miles, and a vertical error of 2000ft.

Nonetheless, the trajectory cumulative distance error for all
methods was found to increase compared to the flight plan.
After examining a random draw of flights, it was found
that predicted trajectories did still see occasional jumps or
whimsy behaviour. Examples of this can be found in Ap-
pendix C. As a mitigating measure, the training function was
adapted to include the trajectory derivative, meaning vertical

and lateral velocity vectors. Yet it did not constrain all pre-
dictions sufficiently. Furthermore, the highly dynamic flight
behaviour in the departure and arrival phases also causes
whimsy characteristics of the predictions. These patterns are
introduced in the data by operational procedures and vector-
ing by air traffic control. However, these effects mainly apply
to the first and final stages of the trajectories. For demand
applications, the effect on arrival is less relevant, as the tra-
jectory is only evaluated up to the FIR entry point.

In conclusion, machine learning methods that are designed
to process sequential data show improved predictive perfor-
mance when generating new trajectories based on the avail-
able B2B flight data. Especially the transformer neural net-
work showed a significant step up. Although training took
longer than the LSTM network, the training was much more
stable and provided better final results. It is difficult to pin-
point the most important element that makes the method
work. However, a few observations were made during the
modelling phase. First and foremost the data formatting con-
tributed significantly to the success of the transformer and
LSTM models. The data variance and dimensionality were
reduced with trajectory normalisation, leading to better train-
ing. Moreover, the decision to train on the difference between
the actual and planned flight path was also very effective. In
the modelling phase, different data formats were tested, after
which this method gave the best training results. The same
holds for training methodology, where a custom loss func-
tion provided a big increase in training effectiveness. The
data format and loss function can be applied to any machine
learning method, however, the improved transformer model
did outperform the other methods. Hence, model-specific el-
ements contribute as well. In part, the multi-headed atten-
tion mechanism can be regarded as the driving element of
the transformer, being much less prone to vanishing gradi-
ent problems. This results in more stable and longer train-
ing. Finally, omitting the complex encoder in the improved
transformer was also a successful contribution. Training an
auto-encoder through back-propagation is difficult for large
data structures. The encoder may become a bottleneck as the
dimension of the input data is lowered. The linear pipeline
therefore proved more effective, but in a future iteration, the
encoder output size can also be increased to still implement
the encoder-decoder structure successfully.

B. Suitability of predicted trajectories to air traffic
demand prediction. Given the improved trajectory pre-
dictions, it was possible to assess the impact on demand
forecasts for the 3-hour look-ahead time. Although the test
dataset was not as large as desired, still some valuable results
could be found. When evaluating the airborne segment only,
the flight duration time estimate did indeed become more
accurate when trajectories were predicted by the successful
TP models. The interquartile range of the improved trans-
former was reduced by almost 30% with respect to the flight
plan-based approach. However, when comparing actual ar-
rival times to the predicted arrival times, the improvements
seemed to wash out compared to the flight plan-based ap-
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proach. This was unexpected, but a potential explanation can
be that the model performs worse on more critical flights.
In demand prediction and optimisation models such as those
proposed by Fernández et al.[3] & Sridhar et al.[20], de-
parture time is a driving variable for the sector demand.
However, departure time is not changed by the model, but
it is commonly argued that ground-based delay will result
in different flight behaviour. Tielrooij et al.[21] state that
pilots tend to make up for any previous delay by being more
assertive in asking for direct routes and increasing the cruise
speed. Although the model received up-to-date departure
time and delay information as input data, it can still be that
these patterns are not fully captured by the neural network.
Furthermore, if regulations were imposed on flights within
three hours before arrival, this could also change the actual
arrival time without the model knowing about the induced
delay. All these uncertainties may lead to less accurate pre-
dictions for flights with larger deviations than flights that
adhere more strictly to the flight plan. This results in better
arrival time predictions for standard flights, but worse predic-
tions for non-standard flight behaviour. It is uncertain what
the root cause of this problem is; either the chosen neural
networks are not capable of explaining possible correlations
between flight path changes and ground delay, or the training
dataset was too small to provide enough samples of flights
that suffer this problem. Due to time and computational
limitations, it was not possible to further investigate these
hypotheses.

Moreover, the actual demand forecasts of the different trajec-
tory predictors have been assessed. This showed that indeed
most models did not provide a statistical increase in demand
forecast accuracy. However, the improved transformer neu-
ral network did show a more significant increase in demand
prediction accuracy. This means that a small improvement
in arrival time error may lead to more stable demand fore-
casts. Comparing the distribution of the error, it can be seen
that the new predictions produce slightly lower peak errors,
meaning real odd predictions are reduced. Examining the
demand forecast during the day, it was found that peak de-
mand predictions especially were improved over the flight
plan method. For the air traffic controller supervisor, the
peaks are more important to be predicted right, as this can
cause a loss of capacity. Better peak predictions can imme-
diately lead to more effective and efficient flow management.
The results are therefore promising, but to confirm the im-
proved peak predictions, the test dataset must be increased
considerably.

C. Implications and limitations. With the given results,
it can be concluded that the chosen generative trajectory
prediction approach offers considerable improvements, espe-
cially with the semi-optimised transformer neural network.
The primary limitation of the method is that the trajectory
prediction accuracy reduces drastically for flights with a du-
ration of more than 6 hours. This can be circumnavigated
by training a separate model for long-haul flights. This will
likely capture the lower spatial resolution introduced with the

normalisation algorithm.

When using the predictions for demand forecasting appli-
cations, seemingly improved and more stable results are
observed in the test dataset. However, as discussed before,
without reliable departure time availability, the demand fore-
casts cannot drastically be improved. LVNL [22] has built
a random forest regressor that predicts the time offset for
arriving aircraft. This method is trained on flight schedule in-
formation, which obtains a mean absolute error reduction of 2
minutes at the 3-hour look-ahead time. In this methodology,
the ground process delay is not excluded, which possibly ex-
plains the significant error reduction. Unfortunately, similar
results were not obtained by improving the TP. Nonethe-
less, the overall error distribution of demand forecasts was
decreased. Furthermore, for airborne flights, the actual take-
off time was explicitly left out of the analysis. This would
directly increase the demand prediction performance, but it
blocks a pure assessment of the trajectory predictor influence.

Finally, although no very significant improvements in arrival
time predictions were found compared to the more gener-
alised random forest regressor approach, it is still worth
mentioning that the trajectory-based approach has an inter-
esting additional capability. In the end, the supervisor applies
the demand forecast to estimate the future task load of the
controller. Trajectory information can be of high value when
estimating the task load of a controller. One can imagine
that complex converging flight paths require much more cog-
nitive skills of a controller than parallel or well-separated
trajectories. Therefore, the predicted trajectories can in a fu-
ture process iteration lead to a task load model directly. The
observed trajectory prediction improvements therefore im-
ply that the proposed generative transformer neural network
is very suitable for both TP and demand forecasting tasks,
which will lead to more effective tactical interventions in the
ATM system.

D. Recommendations. The proposed transformer neural
network methodology showed a considerable increase in the
accuracy of generative trajectory prediction. This led to a
slight improvement in demand forecasting, but this could
not be validated statistically. This is mainly a result of the
dataset that was constrained to one month of traffic. The first
recommendation is therefore to increase the dataset, prefer-
ably to a year of traffic. This will not only allow for a larger
test sample to confirm the hypothetical gains, but in addition
allows training the transformer TP model even further. Al-
though the influence of COVID in the dataset was assumed
to be negligible for trajectory prediction, a new dataset can
also exclude that potential influence. Nonetheless, it must be
noted that already with a month of data, the computational
resources were a limiting factor, despite the availability of a
high-end system.

Secondly, to improve demand forecasts, the departure time
uncertainty is undeniably the largest source of error. The
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D Recommendations

trajectory-based approach can be applied in parallel with an
improved departure time estimate. Corrective models such
as the random forest model as applied by LVNL [22] may
be investigated to complement the predicted trajectories. A
combined approach could leverage the benefits of using more
accurate trajectories for advanced demand forecasting that in-
cludes traffic complexity metrics. Also, in the future TBO
concept, trajectories may be managed and negotiated be-
tween the airspace user and ANSP [21]. A combined model
that predicts departure times and generates trajectories is a
very interesting path of development in that regard. Despite
that, it is recommended to also investigate aggregate demand
prediction models such as the graph neural network that was
presented by Ma et al.[7]. This approach does show a statisti-
cal decrease in flow prediction error, which can result in bet-
ter demand and capacity balancing without a fully developed
TBO concept. Different machine learning models can be
investigated to predict air traffic demand. The graph network
is a good option to model network-wide flow and demand
interaction between airspace sectors. For single-sector pre-
dictions, the transformer neural network or a variety thereof
can also be used to merely predict traffic flow or demand.

Although the transformer was found to be very capable of
generating more accurate trajectories, it is recommended to
continue investigating different varieties or types of machine
learning models to improve the TP performance. Token mix-
ing models, such as the Fourier transformation-based neural
network that was proposed by Lee-Thorp et al.[17], can be
a promising alternative to the transformer neural network.
Specifically, the training and processing speed may be in-
creased with more efficient machine learning methods.

VI. Conclusion
In order to pursue more sustainable, safe and efficient
airspace navigation, the global ATM system is developing
towards the concept of Trajectory Based Operations. ANSPs
such as LVNL seek to manage flight trajectories in all aspects
of their business. One of these aspects is to make sure air traf-
fic demand can meet the available capacity in the airspace.
This is not a trivial task, as flight plans and schedules do not
always give the most reliable demand picture when planning
3 to 5 hours ahead of time. The goal of this research was
therefore to improve air traffic sector demand forecasting, by
exploring machine learning-based trajectory prediction.

To start, in section II, an extensive literature review was per-
formed on the three primary aspects. Demand forecasts can
be made with a more general aggregate approach that consid-
ers flight schedules and flows. Alternatively, 4-dimensional
flight paths can be used to estimate the demand. The latter
approach fits the TBO concept best. Henceforth, trajectory
prediction was examined, where a generative data-driven
approach proved to be the most promising methodology. Fi-
nally, machine learning methods were reviewed after which
the transformer neural network was selected as a novel and
promising method.

In section III the methodology was presented. For the input
data, flight information messages from the Eurocontrol NM
B2B feed at LVNL were gathered. This dataset includes the
filed flight plan and flight status information at the desired
look-ahead time of 3 hours before arrival. Furthermore, the
OpenSky ADS-B repository was consulted to retrieve actual
flight trajectories. Data was prepared and compared based
on duration (aligned take-off times). This allowed a direct
comparison of trajectory prediction performance, without in-
cluding ground delay interference. In particular, the applied
normalisation techniques contributed to the generative per-
formance of the model.

Consecutively, the trajectory prediction and demand fore-
casting models were built. The evaluated TP models that
were selected were a conventional transformer neural net-
work [13], but also an LSTM and feedforward neural net-
work of similar layer complexity. Based on these findings,
an improved version of the transformer was built, as well
as an auto-regressive version. For the demand forecasting
evaluation, a flow aggregate model was created that checked
flights for entering and leaving the Dutch FIR airspace. The
obtained inflow and outflow were summed with the demand
in the previous window.

In section IV, the results of the trajectory prediction models
were compared and analysed. Although the feedforward net-
work failed to converge, the other models showed improve-
ments in the predictive accuracy of the flight plan. Especially
the transformer neural networks showed very stable training
behaviour and could be optimised to make significant im-
provements. Unfortunately, this only holds for flights with
medium duration up to 6 hours of flight time. The chosen
data normalisation method is likely the problem here, so im-
provements can be expected with a dedicated model.

After analysing demand forecasts and flight arrival times in
section V, it can be concluded that the improved trajectories
did result in better flight time estimates. Yet, for actual arrival
time prediction, these improvements washed out slightly.
Only the semi-optimised transformer network showed a more
significant increase in demand forecasting performance with
reduced error outliers and better peak traffic prediction. The
results, however, can be improved directly by using avail-
able take-off time when a flight is airborne, but this holds
for all trajectory-based methods. For demand prediction, the
uncertainty in departure times is a driving parameter, but ef-
forts made to improve this estimate will likely also comple-
ment the trajectory-based approach that is presented in this
research.
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D Recommendations

A. Data
In Figure 13, an excerpt of the B2B data that was used to construct the input dataset is shown. This data was kindly provided by
LVNL, and was pre-processed from the original data feed from Eurocontrol. Not all data fields from the flight progress messages
have therefore been parsed into this dataset. Furthermore, not all fields are consistently filled with data. For example, some
timing information is not available in this specific dataset. This can be seen in the empty columns. However, the architecture is
present, so once this data does become available, these fields can directly be included. The first row of data clarifies the contents
of the column. For a thorough review of all variables, one can consult the flight progress message manual from Eurocontrol
[23].

Fig. 13. The above table presents an anonymised excerpt of the Eurocontrol Network Manager B2B dataset that was used to construct the input dataset.
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B. model architecture
This appendix shows the PyTorch modules of the various models used to evaluate the predictive performance of the chosen
machine learning methods.

Fig. 14. PyTorch architecture of the classic transformer neural network.
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Fig. 15. PyTorch architecture of the LSTM neural network.

Fig. 16. PyTorch architecture of the feedforward neural network.
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Fig. 17. PyTorch architecture of the improved transformer neural network used for generative trajectory prediction, as well as for the auto-regressive model.
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C. Trajectories

Fig. 18. Various predicted trajectories from the validation dataset.
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D. Demand forecasts

Fig. 19. Demand forecast comparison of all dates in the test dataset. Note that the predictions for May 19 2021 are given in Figure 12
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1
Introduction

Over the last century, aviation has grown from a distant dream of the pioneers, longing to soar the
skies, to a reality where thousands of aircraft bring people to every corner of the earth. Although air
transport has brought humanity many good things, there are huge challenges ahead to keep the dream
of flying available for the generations to come. The air transport sector must become more sustainable
and reduce its footprint on the planet. This drive to sustainability is resonating through every aspect in
the sector. Innovations for cleaner aircraft propulsion to efficient flight operations and from improved
aerodynamics to highly efficient air traffic management. This thesis zooms into the latter subject, aiming
to contribute to a more sustainable air traffic management system, while maintaining the high level of
safety and capacity that is found in the operation of today.

Air Traffic Management (ATM) is concerned with managing the air traffic and airspace, such that flights
are executed in a safe and efficient manner. This includes many services such as air traffic control,
navigation, information and emergency services, but also demand and capacity balancing of the differ-
ent airspace sectors. Many different parties are concerned within the ATM system, which makes it a
very complex environment. Efficient flight execution is therefor dependent on the ATM services, and
the European Union [11] estimates that 6% of emissions during the flight are induced by ATM causes.
This can for example be caused by detours around airspace, but also includes aircraft loitering before
landing or take-off. A lot of research efforts are ongoing to reduce the inefficiencies, amongst which
improvements in Demand and Capacity Balancing (DCB), which this research is concerned with.

Demand and capacity balancing is the process of managing the traffic flows through an airspace
block such that safe and efficient flight operation can be guaranteed. Where demand is the num-
ber of flights inside the sector, and the capacity is the ability of the responsible Air Navigation Service
Provider (ANSP) to keep separation between flights and allow throughput. Luchtverkeersleiding Ned-
erland (LVNL), the Dutch ANSP has recently implemented a decision support tool that aids controllers
to balance demand and capacity up to five hours ahead. When a traffic overload is expected, the con-
troller can either assign more resources to increase capacity, or constrain the number of flights allowed
to enter. This effectively delays aircraft, which results in extra emissions when airborne, or introduces
interruptions in the planning for airlines, passengers and airports. The demand predictions are there-
for an important shackle in the chain for efficient flight operations. Unfortunately, demand predictions
contain errors and have a uncertainty, leading to unnecessary regulations and inefficient resource util-
isation. From these observations, the objective of this research is established: To improve air traffic
sector demand forecasting in the tactical domain, by exploring machine learning based trajectory pre-
diction.

With this objective in mind, chapter 2 outlines the problem in detail and formulates a research question.
Subsequently, chapter 3 explores how demand prediction is applied in current operation and what
alternative methods exist. Based on these findings, chapter 4 describes trajectory prediction in similar
fashion. The conventional methodology is first explored, after which more recent innovations and data
driven trajectory prediction are discussed. Since the objective of this research is to explore machine
learning methods, chapter 5 describes the most relevant machine learning algorithms that have been
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applied for demand and trajectory prediction purposes. Additionally, promising alternative methods
are also discussed in this chapter. Having explored the methodology framework, chapter 6 outlines the
available dataset. How this data is processed, and an initial analysis of demand and trajectory prediction
error is given in this chapter. Based on these findings, chapter 7 presents a strategy on the development
of the model, and what experiments can be considered to answer the research questions. Finally
chapter 8 includes the planning for the remainder of the research project before the first conclusions
are given in chapter 9.



2
Problem Statement

2.1. Background
This research is performed at the Delft University of Technology (TU Delft), and supported by the
Knowledge & Development Centre Mainport Schiphol (KDC). KDC is a research institute in the Nether-
lands, focused on ATM research and development of Schiphol airport. This organisation was founded
by Dutch aviation stakeholders amongst which LVNL, the Dutch ANSP. Moreover, KLM and Ams-
terdam Airport Schiphol are also involved. One of the latest developments at LVNL is the Capacity
Management Decision Support Tool (DST). This DST is a toolkit to assist air traffic control supervisors
in planning and allocating resources during the day of operations for flow and capacity management.
In the past, supervisors made capacity management decisions based on experience and expert judge-
ment. However, with increasing numbers of traffic and complexity, the solution space becomes less
straight forward. To aid supervisors in their decisions, the DST will support supervisors with accurate
information and possible solutions to a traffic overload. LVNL[15] specifies the following requirements
of the Decision Support Tool:

• Provide more accurate and complete insight into air traffic load.
• Provide more accurate and complete insight into capacity/workload of runways, airspace and air
traffic controllers.

• Provide tools to balance capacity and demand.
• Signal possible overload situations.

An important pillar of the DST framework is a reliable forecast of the traffic load, also referred to as
demand. Demand in this case means the number of aircraft that occupy an air traffic control sector
during a specific time window. The demand must be balanced against the available capacity. The
capacity is defined as the maximum number of aircraft that can safely flow through an airspace sector
under guidance of the air traffic controller. Capacity can for example be influenced by having multiple
controllers active, or splitting the sector into different segments. When demand exceeds capacity, air-
craft still on ground can be delayed (regulated). Airborne flights may be stacked into a hold. These
measures however are very undesirable. It causes extra fuel consumption, reduced efficiency and net-
work disruptions. Therefor, effective resource allocation to balance capacity and demand is important.
This heavily relies on the demand forecast, which must be reliable and stable on a look ahead time
of maximum five hours. There are many methods to make demand predictions, which will be further
addressed in chapter 3. However, it is important to note that the Dutch situation is predominantly de-
pending on traffic towards Schiphol. Being a large international hub, the arriving and departing traffic
flows from Amsterdam are the main traffic flows in the Netherlands. Furthermore, LVNL only manages
airspace up to FL245, which constrains the demand forecast to Area Control and Approach sectors. It
is therefor that the demand forecast of DST is highly depending on the arrival times of aircraft in these
sectors. In its current form, the DST uses arrival times as received from EUROCONTROL.

When LVNL[40] validated the predicted demand with the actual demand, it became clear that errors
persist. One of the consequences of faulty demand predictions can be an overestimate of traffic that
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exceeds the available capacity. Based on this information, a supervisor is likely to regulate the incoming
overload of traffic, which can eventually lead to the delay of flights. Such precautionary measures are
necessary to ensure safe operations. However, when the demand was an overestimation, it might have
been an unnecessary regulation. Besides imposing unnecessary delay, the regulation can sometimes
backfire: Delayed flights will arrive later, which might cause unexpected high traffic loads that disrupt
the network again. In short, unreliable demand predictions can lead to inefficient traffic flows.

2.2. Research Objective
With the capacity and demand balancing applications in mind, it is clear that stable and reliable forecast-
ing of air traffic demand in a given sector is very important. Both for the efficiency of the ATM system as
well as the safety performance. Current methods for demand prediction within the tactical phase up to
five hours in the future provide reasonably accurate results. Supervisors however experience demand
errors and uncertainty that are not good enough for reliable regulation yet. As a result, the objective of
this thesis is:

To improve air traffic sector demand forecasting in the tactical domain, by exploring machine
learning based trajectory prediction.

This goal opens a suite of novelties to the demand prediction problem. The trajectory based approach
is chosen to align this research with the general development direction of future ATM system, as en-
visioned by Single European Sky ATM Research (SESAR) and Next Generation Air Transportation
System (NextGen). These developments propose a future ATM system that will rely on the concept
of Trajectory Based Operations (TBO). Furthermore, the machine learning methodology is a rapidly
developing research field with a wide range of possibilities. This objective allows to find a data driven
approach that can add value by capturing underlying patterns in the traffic flows. The objective can be
further specified into a research question, which is given below:

To what extent can machine learning be applied to long term trajectory prediction, and how
can its output contribute to demand forecasting of a particular air traffic sector?

This question has three primary elements: Demand and capacity balancing, trajectory prediction &
machine learning methodology. These elements are worked out in further sub questions that help
considerably to structure the research. The sub-questions are defined as follows:

1. What data features contribute most to the demand prediction accuracy of an air traffic sector?
2. Which methods and best practises are currently applied to forecast the demand of an air traffic

sector?
3. To what extend can demand and capacity balancing be stabilised and improved via a data driven

demand forecasting approach?
4. Which input parameters are available pre-departure, and which features are expected to con-

tribute most to data driven trajectory prediction?
5. What existing methods have been applied to trajectory prediction?
6. What generative machine learning method, derived from literature, is most suitable to construct

aircraft trajectories before departure.
7. What are the benefits of using trajectories for air traffic demand forecasting in an airspace sector

that is predominantly based on arriving traffic complexity?



3
Demand Forecasting

3.1. Introduction
To ensure safe flight execution, it is very important that aircraft are separated sufficiently such that no
collisions occur. Within commercial aviation, this task is primarily in the hands of ANSPs that guide
aircraft along to their destination. To ensure enough separation it is very important that limits exist that
prevent an overload of traffic within the blocks of airspace that the skies are made of. This means that
ANSPs must set limits that balance between the capabilities of the human operators to maintain high
levels of safety, as well allowing enough throughput of traffic for practical reasons. These limitations are
called airspace capacity. The next step is then to allow actual scheduled traffic to transit the airspace
block. The traffic within this sector is called the demand. Too much traffic within the airspace block is
called a traffic overload. This may result in increased probabilities of conflicts. To mitigate this, part
of the traffic is often kept in a holding pattern to allow the Air Traffic Controller (ATCo) to safely guide
the traffic. As a result the holding flights are delayed and burn additional fuel. This is undesired in
many aspects, as it deteriorates safety, emissions, economics and efficiency. Therefore, ANSPs apply
demand and capacity balancing to mitigate traffic overloads. By changing the traffic demand or the
capacity limits, the overload situation can be prevented.

The Dutch ANSP LVNL has recently developed a new tool to improve the DCB process. With a Deci-
sion Support Tool, all aspects of demand and capacity balancing are to be improved. Primarily, this tool
should provide more accurate traffic demand predictions and better insights on available capacity re-
sources (runways, airspace configuration, workload and ATCos). With this tooling, air traffic controller
supervisors can make better decisions. For example when a traffic overload situation is expected at
Schiphol, he or she has a variety of possible options: Activate another runway, divide sectors and
allow another controller to assist, or regulate the demand. The regulation option is least desired, as
it delays the departure of inbound traffic while still on the ground. This is called Air Traffic Flow Man-
agement (ATFM) delay. This is a big problem at Schiphol, which is by far the leading European airport
in total ATFM delay, according to research done by Post [46]. Nevertheless, regulations do not al-
ways solve the problem. Schiphol is a hub airport, meaning a lot of passengers transfer. As a result,
flights that are regulated will still try to arrive as soon as possible to ensure a successful connection for
the transit passengers. The pilot will speed up and may still arrive earlier. This can result in a traffic
overload in spite of the regulatory mitigation.

As mentioned in the problem statement, in this study only demand forecasting will be considered. Cur-
rently most ANSPsmake their own demand predictions. The conventional methodology is the trajectory
based approach where flight plans or flight schedules are used to estimate a trajectory. From this, ex-
pected sector occupancy information can be derived. ANSPs that are joined by network management
initiatives such as by Eurocontrol in Europe or the Federal Aviation Administration (FAA) in the US can
rely on larger demand prediction systems. Examples of this are the Eurcontrol ETFMS & PREDICT
system, or the FAA TFMS system. This trajectory based approach will be explained in section 3.2. In
more recent academic research, different approaches to demand forecast are being explored, such
as sector flow models. This method aggregates flights and looks at the entire system of flights, rather
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than individual flights. The interaction between sectors changes the demand parameters. This is further
explained in section 3.3.

3.2. Trajectory Based Demand Prediction
3.2.1. Conventional demand prediction
Classical demand prediction is based on trajectories. Trajectories are sequences of Four Dimen-
sional (4D) aircraft positions. Knowing the aircraft position and altitude at a specified time, it can be
evaluated if the aircraft is within an airspace sector. Combining information from all flights gives the
total aircraft count in a sector at each moment in time. In most studies, this is the definition of demand.
However, some studies deviate from this definition. For example Wang et al.[24] consider the com-
plexity of the traffic within the sector as demand. An organised flow of traffic that follows airways with
a common direction on non-conflicting altitudes is less complex than a flow with a lot of converging
flight paths. However in most current applications this is left to supervisor judgement for determining
capacity. The advantage of a trajectory based approach is that the entire flight profile is available. This
allows traffic dynamics and complexity evaluations such as proposed by Delahay et al. [13] or Wang
et al. [24]. These studies shows that complexity metrics such as trajectory changes (speed, heading
and altitude), conflicts and traffic count can be combined to give a complexity index. With this index,
capacity resources can be allocated more efficiently compared to peak traffic count as the demand met-
ric. This has a great potential to increase sector capacity and efficiency while maintaining high safety
standards.

In some applications the demand is simplified to the arrival flow only. This flow is defined as the num-
ber of aircraft entering the sector during a given time window. Ma et al. [35] modelled sector entry
flow based on flight trajectories and trained a graph neural network to predict entry flows on a 2 hour
prediction horizon for the French airspace. This may at first seem to be a good parameter for demand
and capacity balancing, but this simplification cannot always be applied. The correlation with demand
is very dependent on the traffic characteristics. For example, an Upper Area Control centre such as
Maastricht Upper Area Control (MUAC) usually sees a variety of flows. There is a large bunch of east-
west traffic from the United Kingdom and Oceanic areas, as well as a large bunch of flights from Dutch,
German and Belgian cities to all directions. As a result, the sector occupancy time for MUAC sectors
has a relatively high variance, as was analysed by Könneman [26]. This means that the arrival times
within the sector do not provide enough information to predict demand, hence this assumption cannot
be made. For approach sectors, the entry times can sometimes be used as good indicator for demand.
The flows are generally organised because all traffic converges towards or diverges from a runway.
Fixed routes such as a Standard Instrument Departure (SID) and Standard Arrival Route (STAR) are
organising traffic flows, which can make the throughput more constant. For such applications the arrival
or entry time can be a good indicator of demand.

Current applications
As mentioned before, most of the current demand forecast tools in operation rely on the sector entry
and exit times as predicted by the Eurocontrol ETFMS system or the FAA TFMS system. These flow
management systems currently calculate the sector crossing times with an aircraft performance based
trajectory predictor. A detailed explanation of this methodology is given in section 4.1. In short, the
flight plan is received from the Airspace User (AU), which amongst other information contains the
proposed route, departure time, cruise speed, cruise flight level and aircraft type (ICAO [25]). The
Trajectory Predictor (TP) matches the expected performance (e.g. BADA model) of the aircraft to the
proposed plan. Also other information is added such as atmospheric data. Then the model computes
a deterministic 4D trajectory. In a model based approach this is usually done separately for each flight
phase: Climb, descend & cruise. With this 4D trajectory it can quickly be evaluated when the aircraft is
in each sector. These estimated timings are the final output which is available in the Network Manager
Business-to-Business (B2B) dataset (see: section 6.1) that this research makes us of. Also part of the
output is a new flightplan that is enriched with time and altitude information. All waypoints are given
an estimated overhead time and estimated overhead flight level. For demand calculations however,
ANSPs conventionally use the estimated airspace entry and exit times.
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Uncertainty
The actual TP model that provides this information is not publicly available. This is inconvenient as it
cannot be easily analysed how demand prediction errors are conceived. There have been studies that
thoroughly analyse demand forecasts based on the information provided by a flow manager such as
the Eurocontrol Network Manager (NM). Könnemann [26] extensively analysed this data to quantify
the uncertainty of the demand predictions for MUAC upper area control sectors in the Benelux and
Germany. The study shows what factors contribute to demand uncertainty, the results are displayed
in Table 3.1. Looking at the error sources, the first two items are: Departure Time Prediction, and
Prediction of ATFCM & ATC interactions. Departure times are mostly influenced by; either a result of
cumulative delay throughout the day, or based on the ground processes. For this study, departure time
errors will remain out of scope. ATC-ATFCM interactions on the other hand are largely airborne based
and therefore will be within the scope of this study. A data driven trajectory prediction approach can
be trained to recognise patterns due to controller intervention. The following items (3-5) all lead back
to trajectory prediction inaccuracy. Horizontal and vertical route errors are directly obtained from the
trajectory predictor, and flight speed is the first derivative thereof. From this review it can therefor be
concluded that a significant portion of demand error leads back to the trajectory predictor. Depending
on the chosen methodology, a lot of improvements can be made that extend further than pure trajectory
prediction error.

Table 3.1: Factors affecting sector demand predictions, as described by Könnemann [26].

Remarks Factors Examples

Error sources sorted by level of influence
on sector demand prediction, high to low

1. Departure time prediction
2. Prediction of ATFCM initiatives and ATC actions
3. Horizontal route prediction accuracy
4. Vertical route prediction accuracy
5. Flight speed prediction accuracy
6. Changing airspace adaptation data
7. Weather and wind forecast accuracy
8. Surveillance data accuracy
9. Flight technical and operational errors
10. Trajectory models accuracy

1. Abnormal surface events, unavailable gates
2. Non-standard procedures, style and preference of

controllers

Factors affecting sector demand
prediction

1. Airspace

2. Time
3. Prediction
4. Weather

1. Sector altitude, class, traffic type, primary traffic type
(departures, arrivals, en-route, mixed), ACC

2. Day of week, hour of day, time of year (season)
3. Look ahead time, peak count
4. Severe weather, jet-stream

Investigated factors affecting sector
demand predictions

1. Weather
2. Flight plan submission
3. Regulation
4. Flight type

1. Good or bad
2. Scheduled or Filed Flight Plan
3. Filed or Regulated departure times
4. Commercial, GA, or military

Factors affecting FIR demand predictions Traffic type Arriving or departing

Although the study of Könnemann is very specific for the local MUAC situation, the modelled uncertainty
does represent the order of magnitude of current demand prediction tooling. An example of this is given
below where the uncertainty of predictions for MUAC sector Koksy High are shown. Figure 3.1 shows
that the prediction error standard deviation is generally around 20%-30%, with a slight average under-
prediction. This shows that there is a lot of room for improvement. A supervisor cannot make effective
decisions on demand predictions that have high variance. Könnemann argues that the average over-
prediction of traffic is likely a result due to outflow traffic: Traffic that was expected to cross the sector,
but in the end did not pass through. One of the shortcomings of a conventional model based trajectory
predictor is that it cannot easily predict another route than the input flight plan. Outflow can be due to
re-routing or directs issued by an ATCo. This is not straightforwardly implemented in a kinetic aircraft
performance model. Data driven demand forecasting or trajectory prediction methods may be able to
capture outflow.
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Figure 3.1: Mean & standard deviation sector occupancy count prediction error. Dot is mean, 1/2 bar length is 1 standard
deviation. Sector Koksy High. [26]

3.2.2. Improvements and alternatives
In order to deal with the high levels of uncertainty in demand predictions, Gilbo and Smith [21] tried a
regression model approach to reduce the variance. As both the mean and variance of the predictions
show to be relatively stable, Gilbo et al. believed this can be modelled with a probabilistic approach.
Their analysis on the US focused Ehanced Traffic Management System (ETMS) shows high variance
of demand prediction error similar to Könnemann. The demand predictions are deterministic, mean-
ing the supervisor will only see a single prediction. Gilbo et al. point out that no information on the
accuracy of the prediction is available in the decision making process. A relatively straightforward re-
gression model is applied that considers the predicted demand for the current time window, but also
the window 15 minutes before and after. This is because delayed aircraft may shift from one window to
the next. The prediction error variance could be reduced by about 0.5 aircraft, as shown in Figure 3.2.
The reductions of course depend on the sector and look-ahead time, but in essence it shows that a
probabilistic approach can perform better than the deterministic model.

Figure 3.2: Comparison of the demand prediction standard deviation for the conventional ETMS system, and the regression
model as developed by Gilbo & Smith [21]. The results are shown per US air traffic sector.

Although Gilbo et al. show improvements on predicted demand with a correction model, another pos-
sibility is to improve trajectory prediction. As explained in Table 3.1, the trajectory prediction errors
take a significant share of the total error. With this in mind, the SESAR initiative launched a study on
improved demand and capacity balancing, which was performed by Fernández et al.[17] and is titled
Data-driven Aircraft Trajectory Prediction Research (DART). An important objective of this study is
to apply Machine-Learning Approach to Trajectory Prediction, which will be the basis of demand and
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capacity balancing. This study focuses on the pre-tactical domain (day -6 to day -1 before operations).
The first step is to convert flight plans to 4D trajectories. This is done with a Hidden Markov Model,
and will be explained in more detail in subsection 4.2.3. The next step is then to balance the demand
to meet the available airspace capacity. This means that delays are sometimes required. The study
proposes an agent-based collaborative learning model to calculate and optimise the demand. More
specifically a collaborative multi-agent Markov decision problem is applied where trajectories are the
agents. Each agent is given a local strategy, policy (or constraints) and rewards if the joint strategy
is fulfilled. In this study trajectories can only be delayed, but in a future iteration also 4D solutions
can be implemented. Three different collaborative reinforcement learning methods are applied, as
convergence is not guaranteed. To experiment with the optimiser, a day in January 2016 in Spanish
airspace is modelled. Without any balancing measures applied, the peak occupation count exceeds
the available capacity (20) at numerous occasions. This is represented in Figure 3.3 (a). When the
agent-based model has optimised the situation by imposing delays, the capacity is never exceeded, as
shown in Figure 3.3 (b). However, the error of the new demand prediction and the optimisation have
not been validated. This makes it impossible to quantify the performance gains of this machine learning
approach. However, this exploratory research is currently still ongoing.

Figure 3.3: Results of the Demand & Capacity Balancing study of the research by Fernández et al.[17]. This figure shows the
distribution of interacting flights in Occupancy Counting Periods: (a) initial predictions, (b) after optimisation. The sector’s

capacity is 20.

The study by Fernández et al. shows that demand prediction and the optimisation thereof go hand in
hand. This is confirmed by Xu, Prats and Delahaye [65], that take the trajectory approach one step
further. This study compares four optimisation models, where each subsequent model is given more
variables to vary with. The simplest model can only impose delay, similar to the DART model. The
secondmodel has the ability to select a different trajectory from a set of alternatives submitted by the AU.
The last two models can apply different airspace sectorisation and configurations. The cost function is
then defined as a composite with delay, ATC operating cost, and trajectory alternatives. The experiment
evaluates a full day in February 2017 and comprises the whole French airspace. Trajectories are
created with the trajectory predictor by Dalmau et al.[8]. The results show clearly that the addition
of alternative trajectories gives the greatest performance gain. This means that less delays can be
applied while not exceeding the available sector capacity. Airspace sectorisation and configuration also
show to have a positive effect, but to a lesser extend. These outcomes reinforce the general direction
of ATM developments: Trajectory based operations have great potential, already in the pre-tactical
domain. The challenge is to increase trajectory predictor accuracy, and to introduce a framework in
which alternative trajectories can quickly be negotiated between an airspace user and an air traffic flow
manager.

3.3. Aggregate Based Demand Prediction
Traditional demand forecasting methods were primarily based on trajectories derived from flight plans.
While trajectory prediction on short look ahead times for airborne flights are very accurate, this is less
so the case for longer look ahead times. Air Traffic Control (ATC) interactions, weather, or even ground
processes when the aircraft is not yet airborne, introduce large discrepancies between an actual and
a predicted trajectory. While some efforts have been put in TP and DCB improvements (see subsec-
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tion 3.2.2), a lot of research has been done on a different concept: aggregate demand forecasting. This
concept does not consider individual trajectories, but rather looks at the traffic flows running through
the sector and adjacent sectors. There is a large variety of these aggregate flow models, which will be
discussed below.

3.3.1. Sector flow models
One of the first models to step away from trajectories in demand forecasting was presented by Sridhar
et al. [49]. This research models the US National Airspace System with 22 airspace blocks, and an
international block. A schematic overview of such an airspace block is given in Figure 3.4. Aiming to
predict aircraft occupation count as demand, the selected model is a linear dynamic system. This state
space system requires an input dataset containing takeoff and landings in each sector at each time
step. The state of a block represents the current aircraft count. With a transition matrix that explains
the flow of traffic between sectors, the state of the next time-step can be calculated. The transition
matrix is calculated based on the observed probabilities of traffic flow between sectors in the training
dataset. For each hour of the day a new transition matrix is calculated.

Figure 3.4: The components of aircraft flow contributing to the traffic count in a given centre, as described by Sridhar et al. [49].

The experiment to find the performance of the flow model was to first train the system on two consec-
utive days of traffic. Then, the third day was modelled with solely the flight schedule as input. The
demand curves for most centres show a slight delay with respect to the actual traffic numbers, and an
under prediction of the peak moments. However, Sridhar et al. argue that the peaks could still be dis-
cerned and therefor the system can be used to alert a demand overload situation. The main benefits of
using an aggregate model are to be found in the complexity and magnitude of the calculations. In this
specific case, only 23 airspace blocks are present, which is a lot lower in dimension than predicting an
equivalent of 5000 trajectories. The authors state that a flow model is less susceptible to uncertainties
and that a wide variety of system engineering tools can be applied to improve the model.

In a follow up study, Sridhar et al. [50] aim to reduce the prediction errors by training a set of different
models. These models are trained on different datasets to include daily, weekly and seasonal changes.
The predictions are compared to the actual demand after which the error is forwarded to a probabilistic
hypothesis testing block. This block is able to identify the best fit model and can merge the predictions
of multiple models if there is no clear favourite. A schematic overview of such a model is shown in
Figure 3.5. However the selection via hypothesis testing in this study can only be done knowing the
errors. Without information on the error, no probabilities can be assigned. This is therefor not an
autonomous prediction model yet, but a simple learning or classification algorithm may be applied
in the next iteration. The results of this aggregate sector flow model show a Root Mean Squared
Error (RMSE) between 1.79 and 2.64 aircraft for upper area control sectors in Indianapolis with 2h look
ahead time.
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Figure 3.5: Schematic overview of the aggregate sector flow model with hypothesis testing, as proposed by Sridhar et al. [50]

Similarly, Menon et al. [37], base their aggregate model on the LWR road traffic flow theory by Lighthill,
Whitham and Richards [31]. This theory states that traffic flows behave like fluids. Flow into the sector
affects the density of the sector, and as a result influences the sector output flow. The relation can be
described with the differential equation in Equation 3.1, where q is the traffic flow and ρ is the traffic
density.

δq(x, t)

δx
=

δρ(x, t)

δt
(3.1)

Translating this to a block of airspace with a traffic inflow and outflow, and a demand (traffic density),
Menon et al. find a linear, discrete-time dynamic system that is very similar to the one proposed by
Sridhar et al. [49]. However, the difference is that Menon et al. include an air traffic control action
variable that can manipulate the flow through the sector. In the first iteration of the experiment, a
scenario is created where five cells are connected, amongst which four airports and one airspace unit.
This is shown in Figure 3.6. Each unit has slightly different rules such as inflow/outflow constraints for
some airports, and flow control capabilities for different airspaces. The dynamics are then rewritten to
a state space system, after which control theory elements can be applied to regulate the flow through
the sectors. After checking the controllability of the system, the flow is modelled with controllers in
place at the airports. These controllers can limit the flows to ensure steady throughput with respect to
the inflow capacity. This automated process was proven to be feasible for the small test environment.
Menon et al. call this approach an Eularian approach, compared to the Lagrangian demand prediction
methodology which is based on individual trajectories. The study proves that the Eularian approach
opens the door to control system implementations that can automate or support demand and capacity
balancing.
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Figure 3.6: The traffic environment used by Menon et al. [37] to design and analyse a traffic flow control system.

The aggregate sector flowmodel byMenon et. al. showed a lot of potential, but a few problems still exist.
One of the biggest constrains is the lack of flow dynamics. For example, aircraft speed is assumed to
be constant, and sector transit routes and altitudes are assumed to be constant. In other words, the
transition time of traffic through the sector is solely depending on entry or exit flow. To deal with the
dynamic spatial and temporal changes of traffic flow observed in actual traffic, Chen et al. [7] improved
the Eularian model with different control volumes inside the traffic sectors. The control volumes allow
spatial variations (flight paths) and temporal variations (speeds) to model the differences in transit time.
Analysing historical radar tracks allows to have these variations within the sector flow model. Secondly,
this model updates the transition matrix parameters recursively each prediction step. Chen et al. claim
that this increases the model awareness of prediction uncertainty. To test the demand predictions of
the model, an upper area control centre of Shanghai, China is evaluated. The demand is predicted with
a look-ahead time of 1 hour and for one of the five sectors within this airspace, the results are plotted
in Figure 3.7.

Figure 3.7: Air traffic flow prediction as obtained by Chen et al. [7]. The predictions are the peak flow during a 15 minute
window, which is compared to the actual demand of Shanghai upper area centre sector 5.

The errors produced by this model are difficult to compare to the other models, as the conditions are
significantly different. The geographical location, look-ahead time, and error metrics are not constant.
Nevertheless, in terms of traffic percentage, the mean absolute error is in line with for example the
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results of Sridhar et al. [49], and the normalised standard deviation of the error is around 10-15%.
This seems an improvement with respect to the analysis of Könnemann on current demand prediction
uncertainty, as discussed in subsection 3.2.1.

3.3.2. Alternative models
Aggregate demand prediction is mainly driven by sector flow models, but this is not the only method.
In some literature, a probabilistic approach is proposed. Furthermore, over the last years, machine
learning applications have also been applied to the demand forecasting domain. In chapter 5, these
methods will be thoroughly explained, but the most important findings will be discussed here as well.
Lastly, the airport arrival demand also has a lot of commonality with sector demand prediction. This will
also be explained in this subsection.

Probabilistic flow model
Stepping away from deterministic to probabilistic demand prediction was already found to be a better
method for trajectory based demand prediction according to Gilbo et al. [21]. Meyn [38] took this ap-
proach to the aggregate demand forecasting models. He states that when the input data for a predictor
model is significantly uncertain, then probabilistic models are superior to deterministic models. With
the great uncertainty in aircraft trajectory prediction of conventional demand predictors, this hypothesis
may hold for aggregate demand forecasting as well. To test this, Meyn introduced a probabilistic model
that assigns a cumulative distribution function to the entry and exit times of the aircraft passing through
the sector. This is then evaluated to give a probability of sector occupation to the flight at a moment
in time. The difference is then convoluted and aggregated for the entire set of flights, which gives a
probabilistic demand. Meyn simulated a 2 hour fictional scenario to compare the model to a determin-
istic model. The improvements range around 10%-15% decrease of the error standard deviation. The
sector demand of a real world scenario is not simulated, so this research is not as far developed as
some of the other sector flow models that were discussed.

Random Forest Regression
Besides the probabilistic approach taken by Meyn, another alternative is machine learning. A variety
of different machine learning models have been applied to demand forecasting. The first example of
this can be found in the LVNL decision support tool [40]. The baseline demand prediction in the DST is
purely based on the arrival times provided by the network manager. To deal with uncertainty, a random
forest regression model was implemented. The input are the arriving flights communicated by the
Network Manager, with arrival times as primary feature. A random forest regression model is trained
to predict a new arrival time based on the flight data provided. This model is trained by comparing the
predicted arrival time to the actual recorded arrival time. The average error and confidence interval are
presented in Figure 3.8. The machine learning model shows significant improvements within 5-hour
look ahead time period. As a result, the improved sector entry times lead directly to improved demand
forecasts.
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Figure 3.8: The average error and confidence interval of the estimated entry times in the Dutch airspace. The baseline results
are the times provided via the Network Manager, and the RFR results are corrected times by the random forest regression

model [40].

Neural networks
Neural networks have been amongst themost popular machine learning advancements, and in demand
forecasting, this is no exception. The first example of this is the study performed by Lin, Zhang & Liu [32].
Their hypothesis is that traffic demand is the result of spatial and temporal traffic flow. The Convolutional
Neural Network has proven to be very effective in retrieving patterns from spatial information such as
images. The Recurrent Neural Network (RNN) on the other hand shows excellent time sequence
modelling performance. An example of which can be speech recognition. Harnessing the benefits of
both models, a hybrid between a Convolutional Neural Network (CNN) and RNN is used to model the
traffic flow in the Chinese airspace. The airspace is transformed into a 3 dimensional grid where each
cell has a certain amount of traffic: The traffic flow matrix. For each moment in time the flow matrix
changes due to flights moving between their origin and destination. The convolutional and recurrent
neural networks applied do an excellent job to model the propagation of flows into the future. Hence,
the output of the model is an updated flow matrix. The results of the model are compared to other
methods such as a flight plan based model and a shallow neural network. The proposed convLSTM
network clearly outperforms these models, but it is unclear what look-ahead time the results are based
on.

The convolutional and recurrent neural networks are not the only type of neural network that is applied
to demand predictions. Another promising method is the graph neural network. The most prominent
research on this type of network to the demand prediction problem was developed by Ma et al. [34].
The methodology will be explained in more detail in subsection 5.2.2, but in summary, a network of
nodes and edges is made to represent flights that pass through airspaces. This results in a graph
network, which is then trained by the message passing principle. Sharing node content information
via the edge connections between nodes, at each time-step, allows information to propagate through
the network. Ma et al. use this property to set up a spatiotemporal graph network to represent traffic
flowing through the air traffic sectors in France. The predictions generated by this network are sector
entry flow, which is an important element to construct demand. The experiment is a prediction for an
entire day of traffic in France in 2019. The results of a single node are shown in Figure 3.9, meaning this
is a specific flow of traffic from sector LFBBP2, via sector LFBBP1, to sector LFBBP3. Combining all
the flows through sector LFBBP1 gives the cumulative entry flow. The results of the model predictions
on the validation dataset show a considerable improvement of prediction compared to a LSTM neural
network, especially at longer look-ahead times.
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Figure 3.9: Flow prediction result on node “LFBBP2-LFBBP1- LFBBP3” for an entire day in France, as found by Ma et al.[34].
The upper plot shows results for 0-1h look-ahead time and the lower plot for 1-2h look-ahead time.



4
Trajectory Prediction

Having explored air traffic demand forecasting, it was decided to continue developments on a trajectory
based model. In this chapter, the Trajectory Predictor will be explained in detail. Trajectory prediction
is a task that should result in an accurate estimation of the location of an aircraft in a four dimensional
space; latitude, longitude, altitude & time. This chapter investigates the state-of-the-art methods, which
can be divided into two categories. The model based approach is worked out in section 4.1, which
relies primarily on the dynamics and kinematics of the aircraft in flight. The data driven approach is an
increasingly popular method that exploits the large amount of flight data that have become available in
recent years. This is explained in section 4.2. After investigating the most relevant methodologies, the
prediction accuracy measurements will be discussed in section 4.3.

4.1. Model Based Trajectory Prediction
Model based trajectory prediction can be regarded as the classic method. With a set of input variables,
amongst which the state of the aircraft, the environment and perhaps some intent information. A future
state of the aircraft is to be predicted with a model that incorporates the physics of the situation. In most
TP tasks, the required output is a deterministic 4D trajectory. This includes the 3 spatial dimensions:
Altitude, longitude and latitude. The fourth dimension being the time. However, some other states can
be included in the prediction as well. to name a few, the speed, mass, heading or thrust can be relevant
states for some applications. In ATM however, the 4D trajectory is the core of the future Trajectory
Based Operations (TBO) concept. An accurate 4D trajectory can provide sufficient information to do
conflict detection & resolution, arrival management, or Air Traffic Flow Management. The accuracy
however is verymuch dependent on the input data, as well as the capabilities of themodel. In Figure 4.1,
a schematic overview is given of the model based TP components. The following sections will explain
these elements while providing examples of recent academic work.

Figure 4.1: Simplified representation of TP concepts, as explained by Tielrooij [54].

38
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4.1.1. State, Intent & Atmospheric Data
State
The state of the aircraft before prediction in a model based approach can be just the current position,
altitude and time. For a true kinetic model, the state of the next time-step will be based on the dis-
placement of the aircraft. Newtonian physics require equations of motions. Better estimates can be
produced with better input data and less assumptions. Hence, information on the aircraft mass, thrust,
configuration (e.g. Flaps, gear), control inputs and many more, can all be included to make improved
calculations. The difference between a very simple kinetic model and a complex one often differentiate
itself with the inclusion of more state parameters.

Intent
The aircraft intent is the state that the aircraft aims for at a future time-step. Zooming out to the entire
flight, this is usually to arrive at the planned destination on the scheduled time. Eurocontrol requires
that at least 3 hours before the flight departs, a flight plan is filed that further describes the intended
route [3]. During the flight, the intent can be a certain cruise level, speed, waypoint or a heading.
Moreover, the intent can include a procedure that the pilot programmed into the Flight Management
System (FMS). All this information contributes to what the aircraft is aiming for. Of course, intent is
not always exactly followed and might change. For example bias or noise is introduced in executing
the intended trajectory when a pilot changes from automatic to manual control, or when wind gusts
affect the speed. The intent is usually a collaborative effort between ATCo instruction, and decisions
made by the AU. This means that intent information is distributed among stakeholders of the flight.
Initiatives such as System Wide Information Management (SWIM), Automatic Dependent Surveillance
- Contract (ADS-C) common server, & Essential Ground-Ground Interoperability ((e)IOP) should make
intent information more readily available. But as Tielrooij et al.[55] point out; this is still a work in
progress.

Many studies have aimed to include rich intent information to the TP, to reduce prediction uncertainty
with great success. For example Konyak et al. [27] have tested how ground based TP uncertainty
for the descend phase can be reduced by including FMS intent information received from the flight
deck. The uncertainty in both Top-of-Descend location and lateral profile could be reduced significantly
when intent in the AIDL format was provided to the TP. To illustrate, the lateral prediction root mean
squared error could be reduced from 18 nautical miles to just 0.3 nautical miles at the end of the
descend phase. This is a massive improvement in TP accuracy. However, the research was very
clinical with just one flight and with highly detailed intent information. For example, every configuration
and aircraft state changewas listed. But it shows the potential of including very detailed intent to existing
trajectory predictors. Another example of intent inclusion was performed by Tran et al. [57]. From actual
cruise flight data, waypoints were matched to create an intended profile. Although the methodology
for this study was data-driven, it still showed that significant improvements can be expected with the
introduction of the aircraft intent, other than just the flight plan.

Atmospheric Data
Lastly, the aircraft trajectory is very dependent on the medium that it is moving through. According
to Cole et al.[9], wind, temperature, clouds and precipitation can influence the trajectory and the pre-
dictability significantly. Any information about the weather along the route can improve predictability.
Numerous TP’s have included atmospheric data in the predictions. This can simply be the inclusion
of wind to obtain ground speed from True Air Speed (TAS). Other predictors also use temperature
and pressure information for Indicated Air Speed (IAS) and altitude calculations. This data is of high
value to predictions at short look ahead times. For longer look ahead times, the introduction of convec-
tive weather can increase predictability. Convective weather can be anticipated on medium term look
ahead times, which may explain re-routings. For kinetic models however, this is not straightforward to
capture in a physical model, as the re-routes are human decisions mainly. However, the inclusion of
convective weather can be very relevant for data driven methods as was demonstrated by Liu et al.[33].
This will be discussed in section 4.2.

4.1.2. Initial conditions & constraints
The aircraft state, intent and atmospheric data input can be regarded as the initial conditions for the
trajectory predictor. However, this information is not always readily available for the trajectory prediction
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task. Assumptions might be needed to initialise the model, depending on the specific application. For
example, consider a flight on an oceanic crossing where position data is not always readily available.
Another example can be, that an arriving flight may not yet have a landing runway assigned. This
means a lack of intent information. As a result, a TP may need to make assumptions in order to predict
the trajectory up till the landing. Hence, the initial conditions are primarily determined by the availability
of data.

Also, constraints must be considered before running the model. This can be as trivial as including the
constraints of the flight envelope for different aircraft types. This can include minimum and maximum
speeds for climb, cruise and descend, but also maximum cruise altitudes. Other constraints can be to
include rules about procedures such as overflying waypoints, altitude and speed limits. Also airspace
imposes constraints via different airspace classes, prohibited zones and other varieties. This is only to
name a few constraints that may be relevant for a trajectory prediction task. It is foremost the application
of the TP that determines what constraintsmust be included: For arrival management it is very important
to include constraints about runway use, whereas for Conflict Detection And Resolution (CDR) the
performance constraints may be much more relevant.

4.1.3. Behavioural model
The behavioural model can be introduced to explain differences in flight operations as observed be-
tween aircraft or even airlines. Tielrooij [54] states the following: ”The constraints model describes
what trajectory will be flown, the behaviour model describes how an aircraft will manoeuvre to achieve
that trajectory”. This includes bank angles, reaction time after an ATC instruction, transition between
cruise, climb & descend, configuration changes and flown speeds. These elements can be regarded
as an additional intent that contributes to the future trajectory. However, the behavioural model is often
based on observations and practises rather than a direct input as the primary intent parameters. For
long look ahead times, the behavioural model is a less significant contributor to model fidelity and will
therefor remain out of scope in this research.

4.1.4. Mathematical model
At the heart of the TP is the mathematical model. This element largely determines the accuracy of the
prediction, by including input or making assumptions. The mathematical model is also what sets this
method apart from the less conventional data driven approach (see section 4.2). Generally speaking,
two methods can be inferred from literature.

Kinematic model
The kinematic approach does not model all the forces on the aircraft, but rather directly calculates the
motion of the body. For ATM purposes this is mostly a point mass with kinematic properties. The
point mass assumption can be made because yaw, pitch and roll motions have less relevance for ATM
tasks such as conflict detection. An example of a kinematic model can be the WRAP performance
model as part of the OpenAP model designed by Sun [51]. This aircraft performance model is publicly
available and was build upon Automatic Dependent Surveillance - Broadcast (ADS-B) measurement
data. OpenAP consists of a kinematic model, thrust & fuel flowmodel, and a drag polar model. Although
not yet applied in operational trajectory prediction systems, it may very well be capable to perform such
tasks.

Kinetic model
The kinetic approach is a Newtonian model that applies forces on a body and calculates the resulting
translations and rotations. For ATM purposes, mostly Point Mass Models are exploited, meaning that
yaw, pitch & roll motions are ignored. Examples of the kinetic approach are numerous, but most famous
is the Base of Aircraft Data (BADA) model as developed by Eurocontrol. Several studies have used
and shown the applicability of BADA to ATM research. Poles et al. [45] have analysed and compared
the performance of two different BADA models over the entire flight envelope. Gallo et al. [18] have
shown how the BADA aircraft performance model can be used in a trajectory predictor. Kinetic models
such as BADA model the forces that act on the aircraft centre of gravity. Those being the aerodynamic
forces Lift (L) & Drag (D), as well as the propulsive force Thrust (T) and the Weight (W). The total
energy model is then used to predict the motion of the aircraft, which is shown in Equation 4.1. In this
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equation, V represents TAS. dh
dt is the time derivative of altitude, meaning the vertical speed. Lastly m

is the aircraft mass.

(T −D)V = W
dh

dt
+mV

dV

dt
(4.1)

For conventional aircraft the mass changes due to fuel burn. This is accounted for by applying fuel
consumption values in the model. Equation 4.1 is the core differential equation that can be numerically
integrated to make a prediction of the aircraft state at a future time interval.

For both the kinetic and kinematic approaches, a weather model can be included to make more ac-
curate predictions. Trajectories in ATM are often defined in the geographic reference frame. Aircraft
performance however is usually define with respect to the airspeeds. The wind correction from TAS
to ground speed is therefor most frequently applied. Other weather influences can be the temperature
corrections for altitudes or engine performance. When comparing existing mathematical models such
as BADA and OpenAP, there are pros and cons for both methods. BADA is developed and maintained
by Eurocontrol, which means it requires a license to use. Sun [51] developed an open alternative with
OpenAP. The results of OpenAP and BADA are very similar, meaning both approaches should be
capable for model based trajectory prediction.

4.2. Data Driven Trajectory Prediction
Since the digitisation of society and aviation, more andmore data has become accessible to researchers
in the air traffic management domain. Aircraft have become flying computers and ATM systems have
become much more capable for data gathering. As with many other fields of research, large bodies of
data can bring new possibilities to existing applications. Namely, accurate measurements of processes
can provide statistics and patterns that may have been hidden otherwise. Data driven trajectory pre-
diction models make great use of this by using historic trajectory information as the foundation of a
future prediction. First the available data and how to pre-process this will be discussed. Afterwards,
examples of the latest data-driven trajectory predictors will be given.

4.2.1. Data review
For data based models, the input data is the most important element to make accurate predictions.
Similar to the model based trajectory prediction, aircraft state information, as well as intent, atmospheric
data and constraints can all be part of a data driven model. This data comes from different sources,
which need to be linked and processed such that the mathematical model can predict the future 4D path
of the flight in question. Finding and processing the right sources of data in the ATM environment is not
trivial. Data can be proprietary or contain sensitive information. For example the flight data recorder of
an aircraft makes highly detailed recordings of all the sensors on board the aircraft. This can be very
useful state information for a trajectory predictor. Flight data records are however distributed over a lot
of aircraft, meaning a lot of work to gather a significant dataset. Even more constraining is the fact that
flight data records are kept confidential by airlines in almost all cases. Furthermore, there is no direct
down-link possibility to obtain this information for an online environment. This example shows that a
good source of data may not always be feasible. The following paragraphs will discuss examples and
best practises of input data for a model based trajectory predictor

Aircraft trajectories
Data-driven TP models are based on actual aircraft trajectory data at their core. This means that
at the minimum the 4D state of flights need to be available. Taking the ground based perspective,
primary or secondary surveillance radars provide accurate aircraft positional information. Stored radar
data can be used to get estimates of the position, altitude and time of aircraft. Alligier et al. [1] use
radar tracks for a thrust and mass estimation model, whereas Kun & Wei [28] make an entire radar
data based TP. Nonetheless, surveillance radars are not the latest and most accessible source of
surveillance data. Alternatively, Automatic Dependent Surveillance - Broadcast is an onboard system
that automatically transmits surveillance messages. The core messages contain an aircraft identifier
code, position, altitude (both Global Navigation Satellite System (GNSS) & pressure altitude), and
speed. Other messages may include aircraft status and capability information [52]. The European
Union (EU) has mandated the use of ADS-B from December 2020 [10]. A similar mandate applies to



4.2. Data Driven Trajectory Prediction 42

the US airspace. This means that ADS-B is widely implemented and almost all flights can be tracked
with the technology. Besides the high equipage levels among aircraft, it is also relatively simple and
inexpensive to set up a receiver unit. Such a unit receives the automatic broadcasts of the aircraft
and stores the data. Networks of receivers exist, ensuring a good coverage of the world. Examples
of such networks are Flightradar24 and OpenSky. The latter of which is free and open to use for
research purposes and has very good coverage in the EuropeanCivil Aviation Conference (ECAC) area.
Therefore, the ADS-B data provided byOpenSky was chosen as input for this research. Sequencing the
position, altitude and speed reports of the ADS-Bmessages in the network can provide flight trajectories
as input to a data driven model.

Aircraft intent
The aircraft intent can be very differently specified in a data driven TP task. From high level flight objec-
tives such as a destination airport or flight plan, to very specific intent such as a slight change in airspeed,
or the glideslope intercept altitude. The intent was already explained in detail in subsection 4.1.1. For
data-based modelling however, the intent is not only part of the model input specifications, but will also
be used to train or build amodel. Various data driven studies have used intent information. For example,
Tran et al. [57] have made a machine learning trajectory prediction model. They constructed a Convo-
lutional Neural Network encoder and a Recurrent Neural Network decoder with intent as the primary
feature. This intent was constructed from ADS-B data entirely in two phases. In the first phase, intent
is reconstructed by coupling significantly close waypoints to the flown trajectory. These waypoints will
be regarded as planned route. Heading changes in the flown trajectory that could not be explained by
waypoints were regarded as ATC instructions, and therefor make another type of intent. The results of
the prediction are very good, which is not unexpected when the intent almost completely matches the
to be predicted trajectory. Nevertheless it shows the added value of intent for future upgrades of TP
methods, once this data is available.

Besides generating intent from ADS-B data, intent can also be constructed from flight plans. Numer-
ous studies use the flight plan as intent feature. For example Liu and Hansen [33] take a generative
approach to predict entire trajectories between George Bush International Airport (IAH) to Logan Inter-
national Airport (BOS). Their LSTM based neural network shows good predictions as a result of flight
plan input. As convective weather is a very important element in this study as well, it is hard to quantify
the gain of intent, but the final results are a horizontal average absolute error of 50 nautical miles and
a vertical error of 2800ft. Using a similar model structure, Rozendaal [47] showed improved route pre-
dictions based on flight plan information. The model output are only 2 dimensional routes (longitude,
latitude), but analysis shows an improvement over the filed flight plan. This study also includes different
departure airports, which shows that intent is not only a local benefit.

Based on the results of Liu et al. & Rozendaal, it can be concluded that the inclusion of the flight
plan is a very suitable start to the generative trajectory prediction task. The data source that can be
used to provide flightplan data is the Business-to-Business (B2B) feed from the Eurocontrol Network
Manager. This data is cordially provided via the KDC and consists of flight update messages. These
messages contain the latest flight plan, that can even be updated during the flight. But besides, there is
much more data that can be regarded as intent. For example, if the departure airport is a Collaborative
Decision Making (CDM) airport, time related information will be shared as well. Delays, regulations,
and scheduled timings are all part of this. An extensive description of the available parameters in the
B2B dataset is given in section 6.1.

Other intent information can be the list of estimated ATC sectors that the aircraft will transit through.
This is based on the Eurocontrol PREDICT system, which calculates when the aircraft will enter and
leave each air traffic sector. The B2B data may provide extra context on the intentions of both the AU as
well as other stakeholders such as the departure airport or ANSP’s. During this study the flightplan will
be the primary input, but some of the above mentioned variables may be included in the intent vector.

Lastly, one of the most promising intent data provisions might be the ADS-C connection. This airborne
technology can be considered similar to ADS-B, but now on a contractual connection basis with up-link
capabilities. This connection will be used to send and receive data between the aircraft and a ground
based station such as the ANSP or the airline operation control centre. Regarding intent, Tielrooij et al.
[55] argue that sharing the Extended Predicted Profile over the ADS-C connection is highly beneficial
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to trajectory based operations. This allows a ground based system to receive a trajectory of up to 144
datapoints that the aircraft FMS is programmed to. This also includes arrival routes, holding patterns
or instrument departures. Nevertheless, ADS-C is not widely implemented yet. Currently in Europe,
only MUAC has some systems in place to receive ADS-C Extended Projected Profile data.

Meteorological data
Many trajectory prediction studies have shown that the atmospheric conditions play a large role in
explaining the variance observed between different trajectories.Data driven models potentially have
the ability to find the changes in trajectories as imposed by weather conditions. Ayhan and Samet [4]
developed a Hidden Markov Model where weather information was given as a hidden state among the
cells of the solution space. These parameters are temperature, wind speed and wind direction. The
data was gathered from the National Oceanic and Atmospheric Administration (NOAA) NCES RAP
dataset, which has a horizontal resolution of 13km and 50 altitude levels. As a result of this resolution
and the HMM capabilities, the horizontal mean error was just below 13km.

Liu and Hansen [33] went one step further and included convective weather (thunderstorms). Their data
comes from the North American Mesoscale Forecast system that has 6 hour forecasts of temperature
and wind vectors, among a similar spatial resolution as Ayhan et al. The convective weather is obtained
from the the National Convective Weather Forecast system. With this extra information, they show that
a machine learning generative trajectory predictor is able to predict detours due to convective weather.

Both aforementioned data-sources are common for trajectory prediction studies across the US airspace.
However, for the European situation, a different data source needs to be found. De Leege et al. [30]
used Meteorological Aerodrome Report (METAR) data for predictions close to the airport. This may
however not be a suitable source for predicting entire trajectories, as most of the flight will be outside
of the aerodrome region, and METARs are primarily ground based reports. A European counterpart of
the NCES RAP data can be provided by the European Centre for Medium-Range Weather Forecasts.
Zhang et al. [67] used the wind data from this forecast for their TP application, but at a lower spatial
grid resolution of 80 kilometres. This organisation also has a higher resolution dataset available, which
may be suitable for use in this research. This is explained in more detail in section 6.3.

4.2.2. Pre-processing trajectories
In many data based trajectory prediction models, some pre-processing choices are made to improve
the effectiveness of such models. Most common for machine learning approaches are normalisation
and trajectory clustering. Normalisation is a technique that changes numerical values to a bounded
scale. This helps to expose distribution or relations in data more efficiently. Clustering helps to group
similar trajectories. Specific TP models for each cluster constrain the search space during the training
phase. Both methods can increase performance and stability.

Clustering
Clustering is an unsupervised classification method that is very frequently applied in TP tasks to in-
crease the performance of data driven trajectory predictors. For example Graas [23], Ayhan & Hamet
[4], Fernández et al. [17], Wu et al. [63], and Wang et al. [59] apply clustering which is shown to greatly
enhance the predictability. The idea of clustering is to find trajectories of similar characteristics in hori-
zontal, vertical or temporal profiles. The theory is that different classes of trajectories are the resultant
of different conditions. For example different weather conditions, different procedures and airspace,
or the season/day/time of flight. The different clusters can each be trained with a dedicated model.
Usually the model architecture is the same for each class, but during training the configuration of the
model is adapted to each group or trajectories differently. This allows specific features and patterns for
each cluster to be captured by the models. K-means clustering and Density-Based Spatial Clustering of
Application with Noise (DBSCAN) are the most common methodologies applied to trajectory clustering
[42].

Normalisation
Another method to increase model performance is to normalise the input data. Four dimensional trajec-
tory information has different scales and order of magnitudes for location, altitude and time. Normalising
this data means that the scale will change. For example, the altitude (feet) is on a completely different
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scale compared to lateral/longitudinal changes, which is usually in the order of hundreds of nautical
miles. Data driven models do not interpret scales depending on the units, but just perceive numbers.
Therefor it may become biased during training and consider a certain data feature with its variance
much more important than another. Normalisation helps to scale data accordingly, while not losing any
of its meaning. The resulting predictions will be on the normalised scale, but this is entirely reversible
to the original scale. There are different methods to normalise, where the application is very much
data dependent. Most common are min-max normalisation (Equation 4.2), or z-score normalisation
(Equation 4.3). The latter of which was applied by Wu et al. [63] to normalise trajectories for a machine
learning based TP.

x′ =
(x− xmin)

(xmax − xmin)
(4.2)

x′ =
x− µ(x)

σ(x)
(4.3)

Another useful method that can be regarded as some sort of normalisation is the cyclical encoding
of time. Air traffic has some strong relation with the time of day, days of the week, and season. For
example, traffic at Schiphol is arriving and departing in peaks because of the hub function. This makes
time a very important element for the demand forecasting purpose of the TP. Time in its original repre-
sentation (YYY-MM-DD HH:MM:SS) is purely a linear sequence to a machine learning algorithm. For
example 23:59 in reality is very close to 00:02, but to a computer it is very far apart. This can be solved
by cyclical encoding [40]. Representing the time data (hours, days of the week,and months) by a sine
and a cosine, the representation becomes cyclical. Note that both sinusoids are required, as otherwise
the representation of for example AM and PM cannot be distinguished. This effectively doubles the
input vector which will take extra computational resources. Nevertheless it may be worth the trade-off.

4.2.3. Existing applications of data-driven models
Model based trajectory prediction is not the only type trajectory prediction that is applied. A lot of
academic work has recently shifted towards data driven models, because some of the downsides of
performance models cannot be overcome within that domain. Especially when the TP is build for longer
look ahead times, or generative trajectory prediction, deviations from the intended flight path are more
common, whereas intent information becomes less available. Data driven models have the advantage
of being trained on historic trajectories, and therefor may be able to capture intent without adding new
data. The following subsections will explain some of the data driven methods that have been applied
to improve TP performance.

Regression Models
Regression models are very common in many modelling applications. In trajectory prediction however,
they are not broadly applied. This is partly because the physics of aircraft motion are known to a large
extend, as discussed in section 4.1. Whereas other data-driven models have proven to be more effec-
tive. Nevertheless, some studies have applied linear regression to the trajectory prediction problem.
For example Hamed et al. [20] have made several models to predict the cruise altitude after climb with
a look ahead of 10 minutes. Amongst the set of evaluated models is a linear and Loess regression
model that performs significantly better than the BADA point-mass-model. For example BADA reaches
an RMSE of 1800 feet, compared to 960 and 910 feet of the linear and Loess regression model.

Another trajectory predictor based on a regression model was build by Leege et al. [30]. To predict
the time over waypoints on a fixed arrival route, Leege et al. applied a Generalised Linear Regression
Model. This approach is very similar to an ordinary regression model where the output variables have
a certain probability distribution. A stepwise approach was applied to evaluate the explanatory power
of the input variables. By varying the input variables, the distributions of the output metrics can be
analysed to gain understanding of the input effect on the model outcome. This is therefor a supervised
training methodology. The mean absolute error after a 45NM route was 18 seconds. However, both
methods are only partial trajectory predictors for altitude and time respectively. It is not straightforward
to apply regression methods for multiple dependent variables at the same time in trajectory prediction
problems.
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Hidden Markov Models
Markov models are a popular approach to trajectory prediction with longer look-ahead times. Due
to the stochastic behaviour that trajectories may show, the Markov model is generally considered as
a suitable method to the TP problem. This method requires a discretised grid which represents the
system. The state and transitions of the cells in the grid can then be learned on a probabilistic basis
from historic data. This can be applied for many sequential prediction problems, amongst which speech
recognition and trajectory prediction. Mostly the HMM is applied, which allows the inclusion of hidden
states. Hidden states can for example be atmospheric conditions, or air traffic sector occupancy. The
Hidden Markov Model will then be trained to explain transitions based on the patterns and relations
within the hidden states. This method is applied by Pan et al. [44], and Ayhan et al. [4]. Both aim to
capture the relation of trajectories with weather data as hidden states. Both apply the Viterbi algorithm
to train the model, but where Ayhan et al. make predictions of trajectories pre-departure, Pan et al.
consider airborne flights during cruise. For both studies, the grid size largely determines the results of
the trajectories. The position cannot be determined on higher resolutions than the cells created. The
DART research by Fernández et al.[17] also applied a HMM but with demand prediction in mind. The
cells in the grid can be made to correspond with air traffic sectors. As a result, the predicted transitions
can theoretically be aggregated for the entire set of flights, meaning the output is a demand forecast.
A graphical representation is shown in Figure 4.2

Figure 4.2: Graphical representations of trajectories transiting through blocks of airspace as modelled in the DART study by
Fernández et al.[17]. The trajectories can be obtained through a HMM.

As envisioned in the DART study, the demand is based on trajectories, which is very similar to the
objective of this study. The discretisation of the HMM can be made to correspond to the airspace
sectors. The downside of this method however may be that the resolution of the trajectories is likely to
be bound by the size of the airspace blocks. The results of the research by Pan et al. & Ayhan et al.
has shown that this is likely the case.

Neural Networks
In recent years, a lot of research efforts in data science have shifted to artificial neural networks. Based
on the biological structure of the brain, this method mimics a neural network through one or more layers
of nodes. These nodes connect the previous layer to the next and contain a weight and activation func-
tion. Such networks can be trained via a process called back-propagation. A cost function calculates
the error which is then back-propagated to the network to update the weights of the nodes. Already in
1999, Fablec and Alliot [16] did a first try to implement a neural network for the prediction of cruise alti-
tude. But only since the last couple of years, the application of neural networks in trajectory prediction
has seen a surge. Data science fields in which neural networks have proven themselves, such as im-
age classification, are inherently different from the trajectory prediction problem. trajectory prediction
is a time sequence modelling task with multiple sequences of features, instead of classification with
only one output parameter. This makes it less straightforward to apply a basic artificial neural network
in a trajectory prediction task. Wang et al. [59] approached this problem via clustering and principle
component analysis as preparation, before applying a simple artificial neural network. The network
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receives an input signal, processes the signal in the neurons and feedforward it to the subsequent
layer of neurons. This creates a layered network. Mathematically this can be represented by layers of
connected nodes which have a certain weight and activation function. The weights can be trained by
back-propagating the error via the derivatives of each element. A learning rate then determines by how
much the weights will be updated accordingly. A schematic representation of the simple artificial neu-
ral network is shown in Figure 4.3, which was implemented by Wang et al. This method proved good
trajectory prediction performance on the short term, but longer term predictions stayed out of scope.

Figure 4.3: The artificial neural network applied by Wang et al.[59].

Another method that became very popular was the use of the Recurrent Neural Network (RNN). These
networks have the ability to process time sequences by feeding some of the output back into the net-
work. This network was invented to adapt neural networks to time sequence prediction tasks. Primarily
speech recognition and translation tasks were envisioned, but their application to trajectory prediction
was found to be an improvement as well. Nevertheless, RNNs were not a perfect solution to the trajec-
tory prediction problem. Large sequence modelling suffers from the vanishing gradient problem, where
the useful initial information does not propagate through the network to reach future time-steps. This
means that longer look ahead times show exponential increases of prediction error. Also the exploding
gradient problem is present in classic RNNs, which means that they may not always converge.

To deal with these problems, a lot of varieties have been created. For example the Long-Short Term
Memory Cell (LSTM) cell or the Gated Recurrent Unit (GRU) cell. The working principles will be ex-
plained in great detail in section 5.3. As an example, Overkamp [43], Liu & Hansen [33], and Rozen-
daal [47] all use a LSTM based neural network for the trajectory prediction task. Overkamp applies
the LSTM network to predict trajectories up till 20 minutes in a free route airspace, while incorporating
traffic dynamics. Rozendaal used the LSTM neural network as a generative model by predicting hori-
zontal routes from the last filed flightplan before departure. A selection of the predicted trajectories by
Overkamp and Rozendaal are shown in Figure 4.4.
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Figure 4.4: A selection of predicted trajectories from the research of (a) Rozendaal [47] & (b) Overkamp [43]. Both apply an
LSTM neural network.

Liu & Hansen take it one step further and generate actual trajectories from the flightplan for a single
city pair. The encoder-decoder structure combines both CNN and the LSTM based neural networks to
also include spatiotemporal weather information. This study shows that neural networks are a feasible
method for generative trajectory prediction. Also the GRU network has seen some applications in the
trajectory prediction domain. For example, Tran et al. [57] have applied a hybrid CNN & GRU based
encoder-decoder model for trajectory prediction with up to ten minutes look ahead time. They include
reconstructed intent and show that within the en-route phase, a horizontal prediction error decrease of
30% RMSE can be reached compared to the Eurocontrol standards in CDR tooling.

Ensemble Meta-Estimators
Ensemble Meta-Estimators are supervised machine learning methods that generate a set of many pre-
dictions, after which the average or the best suiting prediction is taken as the outcome. This method is
primarily used in classification problems, of which random forest and Gradient Boosting Machine (GBM)
algorithms are the best example. Both methods consist of individually trained decision trees (forest)
and exploit data characteristics to create an ensemble of classifications. Random forests use training
data randomisation to train trees for different scenarios. GBM uses weak learners to find what splits
reduce the cost function most effectively. Both random forest and GBM have been applied to trajectory
prediction tasks successfully. Dek et al. [12] compared GBM to other data-driven TP models such
as an LSTM neural network. It was inferred that GBM outperformed the evaluated models, but the
look-ahead time was only 120 seconds. This makes the regression sequence fairly short. Because
commercial flights usually do not change their motion drastically within 120 seconds, this method re-
sembles a classification problem more than a regression problem. It is expected that other methods
perform better on the long look-ahead times that this thesis is concerned with.
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4.3. Prediction Accuracy Measurement
Prediction accuracy is the ability of the model to precisely predict the four dimensional trajectory of
the aircraft. This can be measured in any of the four dimensions: Lateral, longitudinal, vertical and
temporal. Mondoloni et al. [39] defined basic output accuracy metrics that can be used to asses the
prediction performance. For Machine learning based models, this is especially important, because the
error metrics compose the loss functions for training the model. Observed metrics are:

• Temporal: Time error is the difference between the time of a predicted event and the actual time
of the event. For an air traffic controller merging two traffic flows onto a route, this can be the
time at the metering point. For demand prediction it can be the entry time into the relevant sector.
Nevertheless, time is likely to be the running variable during trajectory prediction. Hence temporal
error will not be evaluated for training or comparison of trajectories. For demand prediction the
temporal error is important.

• Horizontal: The lateral & longitudinal error can simply be defined as the difference vector be-
tween the predicted and the actual position at a certain timestamp. However, in many TP studies
this is further divided into twometrics: The Cross-Track Error (CTE) & the Along-Track Error (ATE).
The CTE is the distance of the predicted to the actual position perpendicular to the ground track.
The ATE can then be defined as the error distance along the ground track. This is shown graph-
ically in Figure 4.5. For almost any trajectory based tooling, the horizontal location accuracy is
very important; be it for conflict detection or sector load balancing.

• Vertical: Altitude error is the difference between the predicted vertical position and the actual
vertical position at a given moment of time. The vertical accuracy is especially important for tools
that require altitude information. For example to find vertical solutions in a conflict resolution tool.
The Traffic Collision and Avoidance System (TCAS) is a good example of this.

Besides these basic metrics, the accuracy on secondary states can also be measured. For example
speed, heading angle, track angle, amongst others may be taken into account. However, for this study
these properties are less relevant. Given that the trajectory is used to make estimations on the demand
of the Dutch FIR, the temporal accuracy at the entry point is most relevant. Nevertheless, the vertical
and horizontal error metrics will also be evaluated, as these errors will be used in the cost function to
optimise the TP module. Also for comparison with other trajectory prediction methods, these errors are
important. Considering the TBO approach, the predicted trajectories may be applied to other tools or
airspaces as well, so the entire trajectory accuracy is of importance.

Figure 4.5: Horizontal error metrics for trajectory prediction [39].
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Apart from the variables that define accuracy, the errors can be evaluated with different error functions.
Frequently used metrics can be the x-percentile method, circular error probable, coefficient of deter-
mination, Mean Squared Error (MSE), or Root Mean Squared Error (RMSE). The latter of which is
most common in trajectory prediction applications. This metric produces errors with the same unit as
the prediction, always has a positive value, and accounts for large errors with respect to the number
of datapoints. The RMSE is defined in Equation 4.4. Where y is the actual data-point, ŷ the predicted
data-point, and n the number of datapoints.

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (4.4)

Not only the RMSEwill be evaluated, but also the coefficient of determination (R2) may be a good option
to evaluate the performance of the prediction. An R2 value close to 1 means that the TP can accurately
describe all the variance observed, and a value of 0 means the opposite. Equation 4.5 describes how
to calculate this coefficient. In this equation ȳi is the mean value of the observed data. Finally, the error
variance and standard deviation will be included when reporting the performance of the TP that is build
for this research.

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳi)2
(4.5)



5
Machine Learning Methodology

Machine learning is a subdomain of artificial intelligence that is devoted to building models that can
perform a certain task with learning, or self-improving characteristics. Over the last decades, with the
rise of computer sciences and the availability of data storage and processing tools, machine learning
has seen lots of developments and applications. As explained in earlier chapters, this is also true for
air traffic management. Given the vast amounts of data that are produced in the ATM operations, there
are lots of opportunities for machine learning innovations on existing or novel applications. With the
research objective in mind, this chapter will go into more detail on what machine learning models are
commonly used in demand an trajectory prediction, and tasks alike. Furthermore, models that are
potentially relevant to the problem are discussed as well. In section 5.1, a general overview of machine
learning is given. In section 5.2, the machine learning applications in demand forecasting are explored.
In section 5.3, the models applied to trajectories are discussed. Finally, alternative models that are not
yet applied to one of the aforementioned domains are presented in section 5.4.

5.1. General overview
A lot of machine learning algorithms have been developed over the years. The learning aspect of these
algorithms are introduced because of various reasons: Sometimes, the solution to a problem is non-
trivial and cannot easily be explained with equations or rules. In other cases it is not possible to predict
every condition that the variable will be in. For both scenarios, learning can be introduced to solve this
problem. Nevertheless, statistical dependencies or correlations must be present in the data in order to
have a chance of successful modelling. Generally, machine learning algorithms can be subdivided into
three main categories: Supervised learning, unsupervised learning and reinforcement learning. This
is shown in Figure 5.11.

Unsupervised learning is applied when there is no knowledge on the correctness of the outcome. There
is no way to tell the algorithm whether an answer is right or not. What remains is that patterns and
groups can be identified. Grouping data on likeliness that the data correspond to a group is called
clustering. Dimensionality reduction methods transform the dataset to another reference frame. The
information is kept, but patterns may be identified more clearly.

Supervised learning methods can be used when the output labels belonging to the input data are
known. The agents can be trained to learn the relation between the input and output pair. Models
within this category for example are regression and classification. Fitting multiple models to a dataset
and selecting the best for each situation is called an ensemble method. Lastly, deep learning algorithms
are introduced for more complex tasks such as sequence modelling, or generative modelling tasks.

Last, reinforcement learning tasks are algorithms in which an agent is rewarded or punished while trying
different possible settings and combinations. The rewards and punishments can be designed to lead
to an optimum, but allows the algorithm to choose states that cannot easily be predicted otherwise.
In this study, reinforcement learning will not be considered: Since the state of both trajectories and

1https://thaddeus-segura.com/intro_to_ml/
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demand are known and bounded, it is not likely that reinforcement learning is required. Supervised
and unsupervised learning methods will be discussed in the following sections.

Figure 5.1: Overview of the machine learning categories and respective algorithms.

5.2. Machine Learning in Demand Forecasting
Air traffic demand forecasting has seen a variety of newmethodologies that step away from the classical
trajectory evaluation method. Conventional systems such PREDICT (Eurocontrol) and the ETFMS
(FAA) calculate trajectories and then estimate the demand of air traffic sectors by looking at when
flights are inside the sector. Aggregate models disregard trajectories and look at the bigger picture
by modelling the total flow of traffic between sectors directly. Predictions of individual flights are not
essential to predict the total demand. The aggregate models have been improved a lot with better data
and machine learning models. The objective of this thesis is to explore machine learning models that
may be valuable to improve demand forecasting. Although lots of models have been tested, in this
section the convolutional neural network and the graph neural network will be discussed.

5.2.1. Convolutional Neural Network
Aggregate demand forecasting models generally evaluate larger airspace systems instead of a single
sector. By finding patterns in the flow between air traffic sectors, a model can be build to predict
propagation of the flow. This system identification task is very suitable for neural networks. In this
subsection the convolutional neural network will be explained on the basis of two air traffic flow models.
Xie et al. [64] use a convolutional neural network to evaluate traffic complexity in a sector, and Lin et
al. [32] use a CNN in combination with a recurrent neural network to predict traffic flow propagation.

Convolutional neural network is an iteration of the feed-forward neural network and is predominantly
used to process data that has patterns in spatial or grid formats. The most well known application is
image recognition where the CNN is very suitable to find edges, colours and transition characteristics.
The CNN is also inspired by neuron layer structures, but with some additional types of layers. These
layers are a convolutional layer, pooling layer and a fully connected layer. It is not surprising that the
input is usually a 2D matrix, or a set of matrices, because spatial relation between the attributes is of
high importance. The different layers of the network are explained below.

• Convolution layer: The first building block of a CNN is a layer that performs feature extraction
from the input data. Typically this layer consists out of two components, a convolution operation
and activation function.

– The convolution operation is a linear transformation where a small matrix passes through
the input tensor. This unit is called a kernel which is usually of size 3x3,5x5 or 7x7. The
kernel is multiplied element-wise with the input and moves with a given step (stride) through
the tensor. The multiplications of the kernel for each stride are summed and assigned to the
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feature map. This feature map is a summary of the kernel and the input tensor. Besides
changing the size of the kernel, another hyper-parameter is the number of kernels applied.
This produces the same number of featuremaps as output. Very important is that the weights
of a kernel are shared. The kernel is the same for each part of the tensor. This ensures that
learned patterns are positional invariant. A feature can be detected in any part of the image.
A visual representation of convolution is shown in Figure 5.2.

– After convolution, the outputs are passed through a non-linear activation function. This is
inspired by biological neurons that pass through signals with a certain amplitude based on
the signal content. In convolutional neural networks the rectified linear unit (ReLU) or a
variety thereof is used most often. All non-zero signals are set to zero and all positive signals
are passed through as is: f(x)  =  max(0,  x).

Figure 5.2: Convolution operation visually presented by Yamashita et al.[66]. Note that zero-padding is applied on the input
tensor to obtain an equivalent sized feature map. This allows to apply more layers without shrinking the output and losing too

much information.

• Pooling layer: Similar to the convolutional layer, the pooling layer samples the input matrix (fea-
ture map from previous layers) with a specified filter size and stride. This effectively downscales
the input to a smaller form factor. This makes the following steps less computationally expensive,
but also loses some detail. Pooling is therefor a means to trade off between fidelity and computa-
tional cost. Pooling has no learnable parameters like the kernel in a convolutional layer, but relies
on the pooling setting. For example averaging all elements for each step (global average pooling),
or taking the max value (max pooling). The latter is most often applied, but both methods have
their own advantages and disadvantages.

• Fully connected layer: The final layer is then a fully connected layer, which is very similar to a
generic neural network. However the input of this layer is still in at least a 2 dimensional shape.
To pass this through a fully connected layer, a flattening operation is performed. This converts
the input tensor to a one dimensional vector. Each input element is passed to the output via a
multiplication with a learnable weight. Most of the time there are a couple of fully connected layers
in series before the output layer. The output layer is also a fully connected layer, but the number
of outputs corresponds to the number of classes. The outcome is then usually a probability of
correspondence to each class. The final layer also contains an activation function that is slightly
different. For classification this is typically a softmax function that transforms all the outputs to
probabilities between 1 and 0 where the total probability sum is always 1.

These different layers together form a convolutional neural network. Using a suitable loss function
and back-propagation, the weights in the convolutional and fully connected layers can be learned to
produce accurate results. However there are a lot of hyper-parameters that must be evaluatedmanually,
which have a significant influence on the effectiveness of the model. For example the number of layers
applied; but also the number of kernels and filters, their size, and stride are of importance. A general
overview of an assembled convolutional neural network is shown in Figure 5.32.

2https://nl.mathworks.com/discovery/convolutional-neural-network-matlab.html

https://nl.mathworks.com/discovery/convolutional-neural-network-matlab.html
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Figure 5.3: Schematic overview of a traditional convolutional neural network used for image classification.

Also in air traffic demand and capacity balancing, convolutional neural networks have proved their
usefulness. The first example of this is the research by Xie et al.[64]. In this study, the aim is to predict
the complexity of an air traffic sector with a CNN. This is not directly a demand prediction model, but
takes the concept one step further and relates it to the workload of an air traffic controller. By modelling
the complexity, resources can be applied more effectively. The input data is a set of images generated
from air traffic data over a given time interval. The pixels are horizontal locations inside the gridded
airspace. Altitudes of aircraft are recorded over the interval and determine the value of the pixels
over their flown trajectory. Another channel contains the speeds recorded. The final channel contains
the predicted trajectories for the next time window where the ’strength’ of the pixel decays when the
prediction is farther in the future. If a potential conflict is detected, these pixel values are increased,
as conflicts are likely to increase sector complexity. The researchers have recorded the controllers
complexity perception, which is used as target variable. The images produced are fed to a classical
convolutional neural network that is to classify the complexity score as perceived by the ATCo. The
proposed CNN model has a similar layout as shown in Figure 5.3, with 6 convolutional & pooling layers
containing a number of kernels between 32 to 128. The model is compared to a variety of machine
learning models that are based on hand crafted complexity features obtained from the traffic situation.
For example, k-nearest neighbour clustering, support vector machines and logistic linear regression
are applied. The results show that the proposed CNN scores best in terms of accuracy (76%), Mean
absolute error (0.25) and F1 score (70%). Nonetheless, it is not entirely clear what features the other
models are based on. Nevertheless, the error metrics of the CNN prove that it is a sufficiently accurate
model to predict air traffic complexity.

An example of a CNN applied to actual flow prediction is the research by Lin et al.[32]. A large block
of airspace can be discretised into a 3 dimensional grid. This creates airspace blocks which can be
evaluated on aircraft count. These blocks are called a Traffic Flow Matrix (TFM). Because flights
generally follow similar patterns due to daily schedules, the flow between these sectors can potentially
be modelled with a convolutional neural network, where the input tensor is a traffic flow matrix that is
similarly structured as images. However, a classical CNN can only be applied for classification. Yet,
the aim is to make predictions on the future state of the TFM. For this, the fully connected layer of the
CNN is removed, and a recurrent neural network with LSTM cells is applied instead. A more detailed
explanation of the LSTM neural network is given in subsection 5.3.2. This type of network allows to
also evaluate sequential data; in this case a sequence of previous traffic flow matrices. The model
pre-processes the traffic flow matrix with convolutional and pooling layers. This is then passed to an
LSTM network to find temporal relations in the dataset. A simplified schematic overview of the model
is shown in Figure 5.4.
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Figure 5.4: The input and proposed model by Lin et al.[32]. (a) The traffic flow matrix which contains discretised airspace
sectors with air traffic. (b) The proposed model containing convolutional and pooling layers in conjunction with a LSTM neural

network.

Additionally to each Convolutional-LSTM block, a batch normalisation and dropout layer is applied.
Batch normalisation is a method to speed the training progress by re-scaling and re-centring the input
values for the proceeding layer. Dropout is a technique that can reduce overfitting of the model. It
randomly sets some inputs to 0. This effectively introduces noise to the training data, which reduces
overfitting of the model. During training a lot of parameters could be specified to design the best
performing model. The network configuration in terms of layers, kernels, learning rate and optimiser
is to be specified, but also the TFM needs to be found. Finally, a sector spatial resolution is required,
and the best suiting time-step must be decided. In the end, a lot of different settings have been tested
for both the model and the shape of the input data. The final model is made out of 5 ConvLSTM
layers with kernel numbers ranging between 32 and 16. Evaluating a day of traffic in the selected
Chinese airspace, it is shown that the model produces less errors during the day then in the morning
and evening. This can be explained due to traffic volume increasing and decreasing significantly in this
time frame. Another observation is the fact that bigger errors are found in the lower airspace. This is
likely due to climbing and descending aircraft, which shows different and more dynamic behaviour than
in cruise. The results are compared against three different methods: A regression model, a shallow
neural network and a flight plan based model. The proposed ConvLSTMmodel shows best results with
a mean squared error of 80 flights and a variance of 10. The worst performing model is the flight plan
based model that has a mean squared error of 120 flights and a variance twice as large. The hybrid
convolutional LSTM neural network is therefor a great improvement and may be worth considering for
demand prediction applications.

5.2.2. Graph Neural network
A more complex, but very interesting method to predict air traffic flow was introduced by Ma et al.[34].
Their proposal was to model a connected network of sectors with a graph neural network. An airspace
system such as the France airspace consists of many sectors that are connected via traffic flows pass-
ing through. This resembles a graph, which can be modelled by a so called graph neural network.
This type of network is a manually structured network to represent the shape of the actual system. Via
propagation over the edges, information can be passed through the network. Ma et al. state that this
enables better modelling of spatial-temporal features in hourly, daily and weekly periodic traffic flows.
In this section the graph neural network and the specific application to the air traffic flow domain is
discussed.

Graphs are real world data structures that can mathematically be reconstructed with three elements:
Nodes, edges, and global attributes. A node or vertex is a body that connects edges. It can bemodelled
by an identifier, number of neighbours, and a content value or class. For example when modelling a
molecule, a node represents an atom (class) with a number of bonds to other atoms. An edge is the
connecting element between nodes and can be described by an identifier, a weight and a direction of
the connection. Edges enable information sharing between nodes. Lastly the global attribute is a
summary of the graph. It can contain information such as the number of nodes and longest path. As
mentioned before, graphs can be used to describe physical elements in the real world. A molecule is
an example of a graph structure, but also images, texts and air traffic networks can be represented in
graphs. To model the graph, it may seem straightforward to describe a graph by an adjacency matrix
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where each node to node is a row and column and the value in the matrix describes the edges to other
nodes. Although matrices can be processed very efficiently by neural networks (see subsection 5.2.1),
more nodes cause an exponential increase of the matrix. This is very data inefficient and therefor
graphs are described with three different vectors: A vector with the edge attributes, node attributes,
and a vector containing adjacency lists. These list contains the actual node to node edges only. The
addition of a new node does not cause an exponential increase of the data size. Another advantage of
this method is that the Graph Neural Network (GNN) can be evaluated on every element:

• Global evaluation can be applied to describe the state of the graph. For example, when the
graph represents a molecule, the global evaluation of the graph may predict a molecule property
such as colour or smell.

• Node evaluation is applied when the state of a node in the graph is to be predicted. For example
when a graph represents a network of airports, the nodes may predict the arrival flow of aircraft.

• Edge evaluation is applied when the relation between nodes is to be predicted. An example
of this can be image recognition, where the image is represented as a graph. The nodes may
represent objects in the image. Edge evaluation may then predict the relation between these
objects.

The graph neural networks can perform prediction tasks via the process shown in Figure 5.5. First, the
graph and its embeddings are transformed, which is shown in Figure 5.5 as a GNN block. This can
be done with a a variety of methods. The simplest type of GNN applies a fully connected feedforward
neural network on each element. This can be trained via back-propagation similar to any network, and
returns a prediction for all elements. Often pooling is applied at the final step as well, making the GNN
similar to a convolutional neural network. However, this method does not exploit the properties of the
graph structure yet, as the nodes can potentially share information via the edges. This is done via a
process called message passing. Message passing is a three step process, where first the embedding
of all neighbouring nodes are gathered (messages). Then the gathered messages are merged with an
aggregate function (e.g. sum). Lastly, the aggregate is fed to an update function which is most often a
neural network. This network updates the graph into a next stage. Applying message passing k-times,
the information stored in nodes k-steps away can be fed through the graph. This makes the network
capable of learning relations throughout the graph.

Figure 5.5: Schematic overview of a Graph Neural Network prediction task, created by Sanchez-Lengeling, et al.[48]

Message passing generally is applied to the nodes of the graph, but it may also be applied to edges.
A pitfall of message passing is that for large networks information stored in a node farther away then
then the number of message passing layers will never be accessed. A solution here is to also include
the global attributes in message passing. This works as shown in Figure 5.6, where Un are global
attributes, Vn are node embeddings and En are edge embeddings. By pooling information from the
global attribute to the update function of nodes and edges, global information of the graph is included
in the messages. After updating, the information from the nodes and edges is pooled back into the
global attribute.
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Figure 5.6: Pooling information from the global, node and edge levels in a message passing step may leverage the flow of
information throughout the entire graph network. [48]

Graph neural networks are highly modify-able because the update functions and classification layers
can be changed for any type of neural network or function. Also, hierarchical graph structures such
as multigraphs, or hypergraphs are proposed. In these networks, graphs are nested inside a higher
level node to model more complex real world graphs. A challenge for the application of GNNs is to
design an accurate graph that resembles the physical object or situation. When looking at the demand
forecasting domain, the research by Ma et al. gives a good example. In this research, sector entry
flow is modelled with a graph convolutional neural network. The entire model is shown in Figure 5.7.
Their model consists out of seven steps that range from processing the raw ADS-B data to making
predictions on sector entry flow. First, the training data is processed which is obtained from ADS-B
trajectories. The airspace sectors are then overlaid on the trajectories, which results in nodes that
describe sector entry flow. The naming format used consists of; first the sector that is entered (S1),
followed by the downstream sector (S2) and the upstream sector (S4) of the trajectory. Doing this for
all the trajectories gives a large set of nodes.

To generate the edges of the graph, the sequences of nodes are parsed through a Word2vec model.
This is a neural network model that originates from natural language processing tasks. It finds asso-
ciations between words in a provided text. When trained, a word2vec model can return synonyms or
associated words on an input word. In this case the words are sector entry nodes from a day of air traf-
fic, so the result will be a vector of most associated nodes. This can be viewed as an edge connecting
nodes in a graph. The returned associate vector gives the embedding of the edges.

Together with the nodes, a graph can be constructed. Because the flow changes over time, graphs are
created for each time-step where the node embedding represents the temporal flow of the node at that
time-step. The predictive model that then follows is tasked to predict the flow at future time-steps. This
is done with the proposed attention based spatio-temporal graph convolutional neural network. The
input features are composed of three sequences of graphs. First, the recent graph time series, which
just includes the last samples before the prediction. The second feature is the daily series, which
returns a sample of the same time as the forecast series, but then over the last days to include daily
flow patterns. The third feature is the weekly time sequence of graphs, which returns the sequence
with the same attributes as the forecast series over the last weeks. So for example, if the model is to
forecast on the last Monday of march from 13:00-15:00, then the recent feature contains the series of
that day from 11:00-13:00. The daily series contains the series of the previous Sunday, Saturday and
Friday during 13:00-15:00. The weekly feature contains the series from the three previous Mondays
between 13:00-15:00. Each feature is processed by a few spatiotemporal blocks. This consist of a
spatial temporal attention layer (see subsection 5.4.1), and a layer containing a graph neural network
and a convolutional neural network. Multiple spatiotemporal blocks are stacked. Finally the three
features are fused together with a merge function that also includes learnable weights. Evaluating the
predicted nodes for the future time-step gives the expected flow.
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Figure 5.7: Schematic representation of the graph convolutional neural network proposed by Ma et al. [34] to predict sector
entry flow.

The results obtained by Ma et al. have already been discussed briefly in subsection 3.2.2. The model
was compared against an LSTM neural network for a full day of traffic in French airspace. The Mean
Absolute Error (MAE), MSE and RMSE are evaluated. For short look ahead times, the predictions of
both models are comparable. However, for longer look ahead times the error of the LSTM based model
increase more than the graph neural network. The reason for this according to Ma et al. is that ”the
LSTM model learns the correlations in the flow times series on the target node instead of the causal
relationship between flows”. The graph neural network has a higher level of awareness of spatial and
temporal relations of the entire network andmay therefor be able to learn correlations between the node
flow and the network flow. This leads to significant improvements at further look ahead time. Hence,
the graph neural network is a very promising method to be used in demand forecasting.

Another application of graph neural networks in a very similar domain is the research by Sun et al.[53].
In this study, airport network arrival and departure delay is modelled with a dynamic spatial-temporal
graph attention network. Effectively, the model is build up out of a graph neural network and two LSTM
layers. Different to the graph convolutional neural network, this network uses an attention function in
the message passing process. The model is trained on the European airport network with the top 50
busiest airports with more than a year of data on delay. The model makes delay predictions with look
ahead times of up to three hours. The model results are presented in Table 5.1, where the MAE &
RMSE are in minutes. Although no direct comparison is made with another method, the authors argue
that the graph neural network is a superior method for air traffic network modelling.
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Table 5.1: Error metrics for the modelled arrival and departure delay on the European network by Sun et al.[53]

(a) Arrival delay (b) Departure delay
look-ahead MAE RMSE R2 look-ahead MAE RMSE R2

30 min 4.60 7.09 0.38 30 min 3.68 5.87 0.35
60 min 4.75 7.27 0.35 60 min 3.79 6.01 0.32
90 min 4.86 7.41 0.32 90 min 3.89 6.14 0.29
120 min 4.93 7.51 0.3 120 min 3.96 6.24 0.27
150 min 4.98 7.58 0.29 150 min 4.00 6.29 0.25
180 min 5.01 7.63 0.28 180 min 4.04 6.35 0.24

5.3. Machine Learning in Trajectory Prediction
Most of the machine learning models used in trajectory prediction have been discussed already in
subsection 4.2.3. A majority of the applied methods are supervised learning algorithms. Regression
was used by Hamed et al. [20] and Leege et al. [30] to predict cruise level and time over a waypoint
respectively. This is based on observed flight trajectories with a trained regressor. Predicting entire
trajectories was proven to be much more complex with regression algorithms. An example of unsuper-
vised learning for trajectory prediction is the Hidden Markov Model, which is introduced in the research
of Pan et al. [44], Ayhan et al.[4], and Fernández et al.[17]. This algorithm assumes that the predicted
trajectories depend on the observed state. The airspace is segmented into a 3D grid where trajectories
pass through the grid. By observing the flight passing through in terms of grid transitions, the model
can learn the probabilistic relations between a current and future state of the cells in the grid. The HMM
can then generate new transitions representing the future trajectory. However, the trajectory resolution
is limited to the size of the grid cells. Lastly, ensemble methods such as gradient boosting machines
were applied to short term trajectory prediction by Dek et al.[12]. This type of algorithm creates an en-
semble of possible outputs, after which the average is taken as the final result. The learning parameter
and different splits in the decision tree determine the model structure during training, such that the cost
function is optimised. The results by Dek et al. show great improvements over other methods, but it is
non-trivial to apply this model to generative sequences with long look-ahead times.

5.3.1. Clustering
Clustering is an unsupervised classification method that is very frequently applied in Trajectory predic-
tion tasks. Clustering is a method to find and group trajectories of similar characteristics in vertical,
spatial or temporal profiles. There are roughly two types of application observed in literature. Trajec-
tory prediction via classification, or clustering to increase the performance of the actual predictor model.
The classification approach is not used very often, but a good example is the research by Marcos et al.
[36] and Bombelli et al. [6]. In the strategic and pre-tactical phase, when no flight plans are filed yet,
this is a very useful way to predict flight routes. Marcos et al. use density based clustering to find similar
groups of routes that are flown between city pairs. A choice model then selects the most likely route for
a flight between these cities that has no flightplan yet. This can then be used as a dummy in planning
processes. An example of the actual trajectories and the clustered routes is shown in Figure 5.8. In
this application, clustering is fundamentally used to classify flown routes. When a flight is classified to
belong to the cluster, the median trajectory of that cluster is assigned to the flight. In the strategic phase
(between 6 to 1 days before operation), this may produce relevant trajectories for planning purposes.
In the tactical phase however, the classification method yields trajectories that are too generalised and
cannot deviate from the historic set of trajectories. Therefor the uncertainty is too high. For that reason,
this is not a feasible method to consider in this research.
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Figure 5.8: Clustering trajectories for route classification by Marcos et al. [36]. a) Actual trajectories coloured by cluster. b)
The average trajectories derived from the clusters that can be assigned by the choice model.

In the second approach, other TP models are applied in conjunction with clustering to increase the per-
formance of the actual predictor model. In this hybrid approach, flight trajectories are first clustered to
groups after which each group is processed by another machine learning model to produce a trajectory.
Many academic research has implemented this approach, amongst which Ayhan & Hamet [4], Fernán-
dez et al. [17], Wu et al. [63], and Wang et al. [59]. It is shown that the use of clustered trajectories
with specific trained models greatly enhance the predictability. The theory is that different classes of
trajectories are exposed to different conditions. For example due to the airspace that the class passes
through, weather conditions, or the season/day/time of flight. The different clusters reduce dimension-
ality and can each be trained with a dedicated model. Usually the model architecture is the same for
each class, but training configures the models differently. This allows specific features for each cluster
to be captured by the models.

Density Based Clustering
According to Olive and Basora [42], K-means clustering and DBSCAN are one of the most common
methodologies to cluster trajectories. These methods are proven to be effective at clustering, but are
inherently point based. Trajectories on the other hand are point sequences. To be able to cluster 4D
trajectories, a suitable distance function is required. This can for example be the Euclidean distance.
Alternative distance metrics can be Dynamic Time Warping, Hausdorff or Fréchet distance. In order to
find the similarity, trajectories must be of equal length and therefor require re-sampling. Most recent
data driven trajectory prediction studies, such as the TP models developed by Graas[23] & Wang et
al.[59], have successfully applied DBSCAN or varieties thereof. Hence it is worth to explore this method
in more detail.

DBSCAN is a density based clustering technique that sorts datapoints to groups with high and low den-
sity (Ester et al.[14]). The input variables for DBSCAN are Eps & MinPts. Eps is the maximum distance
between two datapoints that decides if it belongs to the cluster. MinPts is the minimum number of
datapoints required for a cluster. DBSCAN classifies datapoints as either a core point, reachable point,
or outlier. Core points have at least MinPts neighbours that lay within the Eps distance. Reachable
points can be reached from a core point within the Eps distance, but has less than MinPts neighbouring
points. This covers an area with a certain density. Outliers are farther away than Eps and are therefor
not included in the cluster. Gariel et al. [19] found that outliers are not uncommon in trajectory datasets
and may thus be caught by the DBSCAN algorithm. Especially when using ADS-B data, low quality
measurements can be present and must be filtered. DBSCAN will mark such trajectories as outliers,
instead of assigning those to a cluster. In contrary to K-means, DBSCAN does not need specifications
of the number of clusters. This may be beneficial, as at forehand it is uncertain how many clusters
can be defined for the use case of arrivals in the FIR of the Netherlands. On the other hand this can
also be a downside, as improper clustering may lead to loss of patterns and useful information alike
when similar trajectories are taken apart. Another pitfall of DBSCAN is its applicability to data with high
variety of densities. For this, Basora et al. [5] have demonstrated that Hierarchical DBSCAN may be
an alternative algorithm.
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Hierarchical clustering
Hierarchical clustering is a slightly different process compared to density based clustering. In this
bottom-up method, all datapoints are initially an individual cluster. Then the distances between points
are calculated and the closest pair is merged to one cluster. This propagates until a single cluster
that contains all datapoints remains. A post-processing step is required to select the useful number of
clusters for the desired application. Bombelli et al.[6] introduce hierarchical clustering to trajectories.
The coarse method is to spatially group trajectories by origin and destination. A finer method however
also requires a temporal similarity, because trajectories are 4 dimensional objects and may be flown at
different speeds. Therefor the average cruise speed is also taken into account for the fine clustering
methodology. Using the Fréchet distance metric, and an automated proces to determine the number of
clusters, this research concludes that hierarchical clustering is an effectivemethod to cluster trajectories.
This is demonstrated over a region in the US with six control centres and 19 airports.

5.3.2. Long Short-term Memory Network
The trajectory prediction problem is pre-dominantly a sequence generation task. This means that se-
quential data must be modelled, which is not easily done with convolutional or feed-forward neural
networks. The recurrent neural network however is capable to process and output sequential data,
hence it is very popular within the machine learning trajectory prediction domain. The basics of the
RNN have been explained in subsection 4.2.3. Over the years the RNN is further developed to avoid
exploding and vanishing gradient problems. The Long-Short Term Memory Cell (LSTM) cell is one of
the advancements made. In Figure 5.9 a graphical comparison is made between a normal RNN block
and a LSTM cell. In this figure xt is the input vector and ht is the output vector of the current timestamp.
Hence the ”vanilla” RNN block receives the output vector of the previous timestep ht−1.

Figure 5.9: Schematic representation of a simple RNN block, and a LSTM block.

The LSTM cell is improved with the introduction of the cell state Ct, which is the horizontal line at the
top of the cell. The cell state is a composite signal that can contain information from the previous cell
state Ct−1, and data from the current cell. There are three gates in that cell that are each activated by
a sigmoidal function which passes through either all information (1) or nothing at all (0).

• The first gate is the forget gate. This determines to either keep the previous cell state Ct−1 or to
disregard it. This is determined by combining the recurrent signal ht−1, and the input vector xt,
assigning a weight and setting the gate value between 1 and 0 via the sigmoidal function.

• The input gate determines whether or not the cell state should be updated. If the cell state is
to be updated, then the previous output vector ht−1 and the current input vector xt are passed
through a weight and a tanh function and added to the cell state.

• Lastly, the output gate filters how much of the cell state is passed into the output. The updated
cell state Ct is passed through a tanh function after which it is multiplied by the output gate signal.
This is done via the the weighted signal of ht−1 and xt and a sigmoid function, similar to the
previous gates.

The LSTM neural network is extensively applied in trajectory prediction. Overkamp [43] used an auto-
encoder LSTM neural network to predict trajectories in the upper airspace of Germany while including
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air traffic dynamics features. The input data is a discretised trajectory over the last few recordedminutes
of the flight. The traffic dynamics evaluated were traffic density, number of heading changes and speed
changes amongst others. This shows that LSTM neural networks are versatile tools that can include
semi-sequential information as well. With a look ahead time of up to 30 minutes, this model was able to
make accurate predictions. However the inclusion of traffic dynamics did not yield higher predictability.
Another trajectory modelling approach was for example investigated by Rozendaal [47]. Based on
flight plans as an input this model aims to generate new routes that are more true to the actual flown
trajectories. The aim of this research was to explore what hyper parameters yield the best results. It
was found that a bi-directional LSTM network produced better predictions than an encoder-decoder
setup.

Nonetheless, the most relevant study for this research is the generative trajectory prediction model
described by Liu & Hansen [33]. Generative models can create a sample of similar structure and
characteristics as the samples in the training data. So in terms of trajectory prediction, a model is given
some input data X, and output trajectories Y . After training, the model should be able to generate
a trajectory from a new input X. This research aims to generate trajectories from flight plans and an
initial aircraft state includingmeteorological data. Themodel is a hybrid LSTMneural network with some
additional data processing components. The first module consists of an LSTM encoder that produces a
fixed-size hidden state from the flight plan. The second module is a decoder LSTM network that models
the 4D flight state at the next time-step. The decoder has multiple inputs: For training, the input data
is the actual trajectory which is processed as a conditional Gaussian mixture from which parameters
can be learned. The primary input is the hidden state from the encoder, which contains the flightplan
information. Lastly, the additional input is a feature cube from the third module. This module contains
a matching algorithm that finds the weather conditions around the aircraft at the current state that is
evaluated. This feature cube contains wind, temperature and convective weather information, which
is encoded by a convolutional neural network before being fed into the LSTM decoder. Based on the
timestamp flight state and features received, the decoder predicts the Gaussian mixtures parameters.
During training, the negative log likelihood is used as loss function. However, when using the predicted
Gaussian mixtures to sample a new state, this does not yield smooth trajectories yet. For that reason an
adaptive Kalman Filter with gating is used. This process generates exponentially increasing trajectories,
so beam search is applied to keep the largest sequences only. The Kalman filter and beam search
make up the final module. The output of this final module can then be passed into the decoder again
to iterate until the final timestamp is reached. The final output sequence with the lowest log likelihood
is selected and smoothed with a Rauch-Tung-Striebel Smoother. The lay-out of the entire model is
shown in Figure 5.10
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Figure 5.10: Schematic overview of the LSTM based trajectory predictor module proposed by Liu et al.[33].

The experiment performed by Liu et al. scopes down to a single city pair. 1697 trajectories between
Houston (IAH) and Boston (BOS) with respective flight plan are used to train and test the model. The
mean average horizontal and mean average along track error produced are around 49 nautical miles.
The mean average vertical point wise error is around 2800 feet and trajectory wise around 2600 feet.
This may seem like fairly large prediction errors, but it must be noted that this is a three hour long flight.
Not many similar studies have build generative trajectory prediction models alike. When looking at a
visual plot of two predicted trajectories compared to the filed flight plan in Figure 5.11, this prediction is
an absolute improvement in terms of routing. When considering the look ahead time and the purpose
of the trajectory for demand predictions, the LSTM model of Liu and Hansen can serve as a good
baseline.

Figure 5.11: Two generative trajectory predictions by Liu et al. [33]. The filed flight plan, actual track and predicted tracks are
shown for a situation with strong winds and a situation with convective weather. The blue and red colour scale shows the

temperatures.

5.3.3. Generative Adversarial Network
In 2014 Goodfellows et al. [22] proposed the idea of a Generative Adversarial Network (GAN). This
is not a fundamental mathematical model like the recurrent or convolutional neural network, but rather
a machine learning framework that builds upon basic networks like the encoder-decoder structure.
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However, the advancements that GAN networks bring are very interesting and therefor worth discussing
in a separate section.

This supervised machine learning network is capable of generating new examples similar to the output
data from patterns and regularities in the input data. Goodfellow et al. invented a way to generate a
sample that is much like the original dataset. By making the machine learning model compete against
the original samples, a high performing generative model can be obtained. This proposal lead to the
GAN model that has two primary elements: A generator, and a discriminator. The discriminator is a
machine learning model that is first trained to recognise samples in the output domain. For example
a discriminator can be trained to recognise an object in an image. When the discriminator is trained
properly to correctly classify a true and a false sample, it can be used in the GAN network. The second
element is the generator. This is another machine learningmodel that has the task to generate a sample
like those in the output domain. This is done by supplying the generator with a fixed length vector that
is of stochastic nature. Sometimes this vector contains a latent variable with noise, sometimes it is just
a random vector. The machine learning generator model makes a sample from this vector and feeds
this to the discriminator. The discriminator also receives a real sample from the input domain. Now
the discriminator classifies which one is true and which is false. If the discriminator made a correct
classification, then the generator will be updated. This causes the generator to improve until it fools
the discriminator. When the discriminator is fooled and makes a wrong classification, the discriminator
is updated. This is a zero-sum game and can possibly be iterated to infinity. The generator eventually
becomes very good at creating samples that are plausibly from the domain. A visual representation of
the GAN network layout is shown in Figure 5.123.

Figure 5.12: Schematic overview of a Generative Adversarial Network.

The GAN network is applied to the trajectory prediction problem by Wu et al.[62]. In this study, the
image generation capabilities of GAN models are exploited. First, trajectories are normalised and
sampled to a fixed length. This allows the data to be converted to images; where the Red, Green and
Blue channels of the image provide enough dimensions to store the data. Original GAN networks are
not perfect, because the discriminator can sometimes be instable. When this happens, only a narrow
selection of the input is recognised as real. This then propagates to the generator which will scope to
produce a subset of the training data only. When training is finished, the generator will only produce
a couple of different results. For this reason Wu et al. decided to take a more advanced GAN. The
”Wasserstein GAN Gradient Penalty” model has numerous benefits. It converges faster, fits better to
datasets and can be used to a wider range of application architectures. Wu et al. experiment with
three different generator/discriminator lay-outs. A one dimensional CNN, a 2 dimensional CNN, and a
auto-encoder LSTM neural network. The resultant output of the GAN model is then a newly generated
image, which is converted back into an actual trajectory.

3https://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html

https://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html
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The GAN model is trained to predict trajectories between Chengdu and Beijing (China) on the basis of
2028 flights in the summer of 2019. The 1D convolutional neural network shows to be the most effective
at generating trajectories, and is also the fastest predictor. Nonetheless, the error metrics used are not
directly comparable to the results by Liu and Hansen [33] for example. The predictions are based on
one single flight plan as input and therefor the output is not specifically bound to an actual trajectory or
flight. Running multiple simulations returns the average prediction of the model, which is compared to
the average of the actual flights. This shows a good improvement over the flight plan. The GAN model
is likely to generate improved trajectories, but the error is not directly quantifiable. This method may
therefor be an interesting option for trajectory assessment in the strategic domain, but improvements
are required to apply this method on the day of operations.

5.4. Alternative Machine Learning Methods
In the previous sections, the most recent and promising machine learning models were discussed
that have been applied to demand forecasting and trajectory prediction. Looking back at the general
overview of machine learning methods in Figure 5.1, it can be concluded that most of the supervised
learning techniques have been applied to the problem. Regression, classification, ensemble methods
and deep learning have all been tested to some extent. Most of the research focused on deep learning
methods that were a significant improvement over existing demand forecasting or TPmodels. However,
because of the high commercial value, there have been a lot of new developments in machine learning.
This results in new models and varieties of existing models. In this section, a few models will be
discussed that are relevant to the research.

5.4.1. Transformer Neural Networks
Many of the recent machine learning developments originate from natural language processing tasks.
This is a field of research that aims to process and create language elements such as text and speech.
Machine learning is a very helpful tool in this field because there is a lot of data available, but language
is hard to express through definitive structures and rules. Machine learning was found very capable
of explaining the language irregularities. Language processing is often a sequence to sequence task,
much like trajectory prediction. For example, translation converts a text in one language to a sequence
of text in another language. This requires deep learning methods that can process sequential data. In
previous sections one of the most prominent methods was discussed: The recurrent neural network,
and more specifically the LSTM neural network, was found to be a good sequence to sequence model
(see subsection 5.3.2). Nonetheless, recurrent neural networks such as the LSTM network have a cou-
ple of pitfalls that constrain performance of the model. The recurrences in these networks should make
sure that historic data influence the predictions, but unfortunately vanishing gradients limit the longer
term effect. Also exploding gradients can be present, which block model convergence. Lastly, the
biggest constrain of the recurrent neural network type is the computational power required. Each time-
step needs to be evaluated separately, which means the computation cannot be parallelised. Parellal-
isation is specifically important for making efficient use of computer Graphics Processing Unit (GPU)
hardware, which is a dedicated powerful computing unit. To overcome these problems, Vaswani et
al.[58] proposed the concept of a transformer neural network. This network is able to evaluate a se-
quence entirely in one evaluation. The internal mechanisms do not suffer from exploding gradients,
and the computations can be parallelised. This makes the transformer neural network an interesting
model to research.

The transformer neural network invented by Vaswani et al. is structured corresponding Figure 5.13.
The left hand side of the model is the encoder structure that takes the input embedding and converts it
to a hidden state. The right hand side is the decoder, which learns the corresponding outputs. Based
on the learned output, the decoder deciphers the hidden state into an output probability. The primary
mechanism in the transformer neural network is the multi-head attention block, which is an ensemble
of self attention operations. The entire methodology will be explained in more detail below.
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Figure 5.13: Transformer model architecture as proposed by Vaswani et al.[58]

Encoder
The first element of the encoder is the input embedding. This unit takes the input and converts it to a
vector that is processable by the model. This conversion relies on an embedding space that spans the
whole range of input. Similar items are closely positioned in the embedding space, whereas different
items are placedmore apart. An example of input embedding is the word2vec model that was explained
in subsection 5.2.2.

After the conversion of the input embedding, a positional encoder function adds information to the
vector about the position in the input sequence. Vaswani et al. apply sine and cosine functions as in
Equation 5.1, but lots of other functions can give similar results. This allows positional information to
be taken into account without applying a recurrent neural network. After adding a positional encoding
the layers of the encoder begin.

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(5.1)

The signal is then taken into a multi head attention block. The concept of attention is inspired by human
visual attention, for example when reading a page of text. While reading, a human pays attention to only
a small part of the page to read that content and disregards the other parts. By changing the attention
to subsequent words, the whole text can be understood. In deep learning this principle is applied
to emphasise the attention of one vector with respect to the other vectors. This is mathematically
expressed following the scheme in Figure 5.14(a): First, the input signal is split into three different
attributes: Keys (K), Queries (Q) & Values(V ). The queries and keys are passed through a MatMul
layer which is a matrix multiplication of the queries and keys vectors. This gives a score matrix where
higher scores yield more focus, and lower scores yield less focus. Then the score matrix is scaled with
the square-root of the dimension of the matrix. This reduces exploding values when evaluating lots of
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different vectors. Optionally the score matrix can then be masked, but this only happens in the decoder
of the transformer. Finally, a SoftMax function is applied, which gives a matrix of probabilities where
each row or column adds up to 1. In the final step, the original signal (values) is then multiplied with
the attention weight matrix. The higher attention scores will thus keep the signal of the vector high,
whereas the lower attention scores will reduce the respective signal.The mathematical expression of
attention is given in Equation 5.2. Because the Queries, Keys and Values all originate from the same
input vectors, the operation is called self-attention.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (5.2)

In multi-head attention, multiple attention evaluations are applied in parallel with a linear feed forward
layer before each attention head. Afterwards the produced vectors are concatenated and a linear layer
is applied. This is shown in Figure 5.14(b). The linear layer introduces learnable weights to be able
to train the signal. The final concatenation and linear layer combine the result of all attention heads
into a single output vector with the same dimensions before the multi-head attention block. Because
each head has learned differently, the final vector can have a lot of representative power. Vaswani et
al. implement 8 attention heads, but this can be a different design parameter.

Figure 5.14: The attention mechanism as presented by Vaswani et al.[58]. (a) Scaled Dot-Product Attention. (b) Multi-Head
Attention.

After the multi head attention block, a residual flow of the input is added and the result is normalised.
The following layer is then a position-wise feed-forward neural network. It contains two linear transfor-
mations with learnable weights, and a ReLu activation function in between. The residual taken before
the feed-forward layer is then once again added to the output of the feed-forward layer, which is then
normalised. The number of encoder layers can be selected as a design parameter. Vaswani et al.
apply six layers for their language translation task.

Decoder
The encoder and decoder are very similar in structure with multi head attention blocks and feed for-
ward layers. However, the decoder has small but fundamental differences. The decoder is an auto-
regressive function, meaning the signal is processed one element at the time. The output labels cor-
responding to the input are shifted by one position first. This means that, given the input at position i,
only the previous outputs (i− 1) are made accessible to the decoder. Otherwise a 1-to-1 mapping may
be established by the model, which does not yield any predictive power. The signal is taken through
the embedding space which results in a vector format. The positional encoding is added to the vector
to give positional context information.

Similar to the encoder, the signal is then taken into a multi-head attention block which applies self
attention. However this time, the optional masking element as shown in Figure 5.14 is in place. Masking
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is applied before the SoftMax function, and sets values that should not yet be available to the decoder
to negative infinity. Together with the position offset, the masking makes sure that the model will not
be attending to a signal that is yet to come. This block also contains multiple attention heads which
are then concatenated and fed through a linear layer. The residual signal is added once again and the
result is normalised.

The decoder then has another multi-headed attention block, but for this block, the queries and keys are
taken from the hidden state output of the decoder. The values are taken from the decoder signal. This
allows the model to determine which part of the encoder input the focus should be placed on. All the
encoder input is available, so the decoder can attend over any position. The result of this multi headed
attention block is added to the residual decoder flow and normalised.

The following layer is equivalent to the encoder, with a position-wise feed-forward neural network, and
a layer that adds and normalises the residual signal. The final layers of the decoder are a linear feed-
forward layer that acts as a classifier. The input is mapped to N output classes. Lastly a softmax
function is applied once again that converts the classification into a probability score between 0 and 1.
The index of the highest probability can then be taken as the predicted value.

Results
As mentioned, Vaswani et al.[58] build the transformer neural network for natural language processing
purposes. The experiment was therefor to make translations of sentences. The model was trained on
the WMT 2014 English-German and English-French datasets which has millions of sentences in both
languages. An Adam optimiser was applied with a variable learning rate. Also during training, dropout
and label smoothing were used to tweak model performance and reduce over-fitting. The results show
a superior score for only a quarter of the training data compared to other state of the art translation
models. The main idea of transformer neural networks was that computations can be parallelised,
and therefor show faster convergence. This is an advantage of the attention mechanism compared to
recurrent signal processing in RNN networks. This hypothesis indeed proved to be the true. Comparing
the results of 8 different models, the performance scores achieved of the transformer models are often
better with significantly lower training costs.

The transformer neural network is included in many commercial applications such as Bidirectional
Encoder Representation from Transformers (BERT) and Generative Pre-trained Transformer (GPT).
BERT can perform lots of specific tasks in natural language processing. For example text classification
or language inference. GPT, is a similar tool for language processing tasks. It was recently made
available for public use as a text generation machine, that produced outstanding results 4. Applica-
tions outside the natural language processing domain are also found. In biology, lots of sequential
data exists. DNA, RNA and protein structures are just a few examples of this. Zhang et al.[68] sur-
vey which biological modelling advancements have been conceived by transformer neural networks.
Especially the BERT model was modified to many different tasks. For example a significant improve-
ment was made on identifying causal factors on acute liver failure. Another BERT adaptation, named
GeneBERT, showed good improvements on tasks such as promoter and transcription factor binding
sites classification, which is an important field in DNA and protein studies. Lastly, transformers have
also found their way to transportation engineering. An example of this is the study by Wen et al.[61],
where a convolutional neural network is combined with a transformer to predict road traffic flow. The
model once again shows state of the art performance with a reduction of computational cost compared
to recurrent neural networks.

5.4.2. R-Transformer
The groundbreaking improvements that were conceived with transformers led to a variety of different
implementations. The heart of the transformer, the (self) attention mechanism, was applied in for exam-
ple the graph neural networks by Ma et al.[34] & Sun et al.[53]. This was discussed in subsection 5.2.2.
But also entirely new model structures have been created based on the transformer neural network.
A good example of this is the recurrent neural network enhanced transformer, also referred to as R-
Transformer, proposed by Wang et al.[60]. They argue that transformers are very effective at capturing
long term dependencies in sequence-to-sequence prediction, but the transformer lacks components

4https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt
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that can capture very local dependencies. Also, transformer models tend to be very design intensive,
meaning it is not straight forward to find the right settings for a model converging on the optimum. The
R-Transformer was designed to overcome this problem by combining the strength of recurrent net-
works to model local dependencies, and the strengths of the transformer in computation speed and
longer term dependencies. The proposed machine learning model is composed out of three different
layers: A local recurrent neural network layer, a multi-head attention layer, and a feed-forward layer.
An illustration of a single R-Transformer layer is presented in Figure 5.15.

Figure 5.15: Schematic overview of a single R-transformer layer by Wang et al.[60]

To better represent local dependencies of language sequences, the R-Transformer was designed with a
local RNN as first layer. The full input sequence is split into short batches that are sequentially evaluated
by an RNN. This makes the operation analogous to a convolution operation. The local RNN can be
designed with standard recurrent cells, but other varieties such as GRU & LSTM cells are also possible.
The subsequent layer is then a multi-head attention layer which is equivalent to the original transformer
by Vaswani et al.[58]. The final layer is a position-wise fully connected feed-forward layer which is
a non-linear transformation of the multi-head attention output. Lastly a normalisation layer is applied
to make the final prediction bounded. To show the effectiveness of the model, a three layers deep
R-Transformer is compared to other similar machine learning models. Amongst which a transformer,
temporal-convolutional network, and LSTM neural network. The comparison is made on three different
tasks: Pixel-by-pixel sequence classification, polyphonic music modelling, and a language modelling
task. The R-Transformer is shown to be the best performing or runner-up model in each task. However
it is unclear what computational strain this model induces, which is one of the benefits of the original
transformer over recurrence based models. Lastly, the tasks presented are not generative sequence-
to-sequence problems. If the R-Transformer is to be applied on pre-departure trajectory prediction, an
adaptation is required to make this work.

5.4.3. Token Mixing
Another proposal in machine learning to improve over the success of the transformer is token mixing.
As explained before, Transformers rely on the attention mechanism to find relational context between
elements in the sequence. Because of the scaled dot product, the attention mechanism complexity
increases quadratically with the length of the input sequence. This means that the computational cost
increases quadratically as well. To reduce the cost, lots of modifications and tweaks have been made
to the transformer. Other developers and researchers began exploring different means to capture re-
lational context within the sequence. This is where token mixing models are introduced. Instead of
having an attention layer, these models introduce a layer that converts or changes the input sequence
to another format, without losing important sequential information. For example, Lee-Thorp et al.[29]
introduced a Fast Fourier Transformation layer to replace the attention layer. This converts the input
sequence vectors to a vector representation in the frequency domain. Because part of each sequence
token will be represented in a frequency vector, tokens are mixed. This allows relational context to
be learned in the subsequent feed-forward layer. Because the Fourier transform is reversible, all in-
formation is maintained, only in a different domain. An example of the encoder structure is shown in
Figure 5.16(a).
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Another token mixing proposal was brought forward by Tolstikhin et al.[56], as an alternative to trans-
formers and convolutional neural networks in computer vision applications. This machine learning
model, called MLPmixer, is relying on token mixing through a static multilayer perceptron. A multilayer
perceptron is a feed-forward neural network with at least one hidden layer. The proposed model takes
the sequence of pixels as input and divides it into N patches. The patches are then transposed and
passed through a multilayer perceptron. This layer consists of two fully connected feed-forward neural
networks with a non-linear GeLU activation function in between. The output is then transposed back.
This has effectively mixed the tokens, without loosing any information. The original input patches are
added as a residual flow and the result is then normalised again before another mixing layer is added.
An illustration of the MLPmixer is shown in Figure 5.16(b).

Figure 5.16: Token mixing models have been proposed to reduce computational costs of current operational machine learning
models such as transformers. (a) Lee-Thorp et al.[29] introduced the Fast Fourier Transform as an effective replacement for

attention. (b) Tolstikhin et al.[56] used a transpose operation in combination with multilayer perceptrons as a token mixing layer.

The results for both the Fourier basedmodel andMLPmixer are close to current state of the art methods.
Depending on the scenario in which they are applied, token mixing methods may yield equally sufficient
results as the best performing transformer neural network. However, the computational cost or time can
be decreased significantly with tokenmixing. Lee-Thorp et al.[29] show that their Fourier transformation
network is almost twice as fast as the evaluated transformer models. When selecting a model for
sequence modelling applications, the costs should not be neglected. Token mixing models can be a
great alternative in that regard.



6
Data Collection and Preparation

In order to improve demand forecasting of a specific air traffic control sector, data is an essential ele-
ment. Given that this research is to improve the demand predictions with machine learning methodolo-
gies, the data provisions are at the core of this research. In chapter 3, the current state of the art in
demand forecasting was discussed. Various sources have shown the predictive accuracy, and what
elements contribute to the observed error. Based on these findings it became clear that departure time
uncertainty and trajectory prediction errors are at the root of the problem. The selected approach in
this research is to apply a novel machine learning model to predict trajectories. chapter 4 has shown
different methods of trajectory predictions that have been tested. Clearly, model based TP is unable to
include deviations on the longer look ahead times that are required for demand forecasting. Although
this may be solved with improvements of intent information, this is not yet possible. Alternatively, data
driven trajectory prediction may be able to capture these differences through pattern recognition and
statistical evidence. For this reason it is decided to build a trajectory predictor model based on ma-
chine learning. The selected model will be a transformer neural network. However, before modelling
can kick-off, it is important to investigate what data is required, what data is available, and how to pro-
cess it. For this research two primary sources of data are available. First in section 6.1, the available
information as model input is explained. This is data from the Eurocontrol Network Manager via the
Business-to-Business (B2B) connection that LVNL has. In order to train and validate the model, the
actual trajectories must be available as well. For this, ADS-B data is used that is provided by the Open-
Sky network. This data is explained in section 6.2. These two data sources are at the core of the model.
For improvements however, weather information will be very relevant. This data is retrieved from the
European Centre for Medium-Range Weather Forecasts.

6.1. B2B Data
The Eurocontrol Network Manager is an organisation that is centrally located regarding European air
traffic information. Because they are monitoring the traffic flow across the entire ECAC area, they
receive a lot of information from ANSPs, airlines, airports, ground handlers and other stakeholders.
Because the European Union is developing towards a Single European Sky, most of this information
is shared by the network manager. For securely sharing the data with the right stakeholders, different
networks and architectures, such as SWIM and business to business connections have been build.
LVNL, the Dutch ANSP, is subscribed to the B2B connection with the network manager. This connects
the organisation with lots of different information flows. The information flows are categorised into
different services which are explained below.

• Flight services: Specifically focused on actual flights towards and inside the ECAC area. This
service provides data sharing capabilities on flight planning and management between airspace
users and the ANSPs. It allows users to create and file a flightplan, which is then validated
and monitored with the associated air traffic control sectors. Furthermore, flight services include
departure and arrival planning tools which is relevant for (CDM) airports. Air Traffic Flow and
Capacity Management (ATFCM) slot information is another important element in the flight services
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data suite. This allows the network manager to regulate flights for demand and capacity balancing.
Lastly, flight services also contain information about the progressing of airborne flights. This can
be position reports, but also status updates or system activation messages.

• Airspace services: Via this service, NM is providing a means to access up-to-date information
on airspace. This data is retrieved from the Aeronautical Information Publication and NOTAM
provisions in the European airspace. Also availability of airspace is included which should allow
Flexible Use of Airspace implementation.

• Flow services: The primary function of the network manager is to manage the air traffic flow
through the European network. With this service the network manager updates stakeholders on
the regulations that are enforced. As this is a collaborative effort, there are several management
tools in place to manage ATFCM scenarios and measures, or simulate network impact. This ser-
vice also shares information such as traffic count at aerodromes and airspaces or delay situation
information.

• General information services: The final service contains general information about the B2B
service. This includes general ATFM messages about the global network operation. Also release
notes and technical documents on the B2B services are available here.

From the above-mentioned services, the flight services and airspace services are the most relevant
information sources for building a machine learning trajectory predictor. The flight services that are
available to this research consists out of flight messages containing information about flights. This data
is received in XML format via a secured web subscription service. For this research, given the look-
ahead time horizon of 3 to 5 hours in demand and capacity balancing, the most important messages
are Flight Plan messages and Position Reports. Flight plan messages can be First System Activation,
or ATC Proposed Flight plan messages. These messages contain the scheduled flightplan, which is a
sequence of waypoints that have a latitude, longitude, flightlevel and estimated overhead time. Besides
this information these messages also contain general flight information such as callsign, departure and
arrival airport, aircraft type & registration, and timing information. This includes an estimated off-block
time, arrival time and taxi time. The flight plan however is not only included as a flightplan format, but
the message also includes an airspace crossing plan. Based on the flightplan, the estimated times
for airspace crossing are calculated. This allows the network manager and ANSPs to directly obtain
demand estimates from the flight plans.

For flights that are already airborne, the B2B data contains regular updates via a Correlated Position Re-
port (CPR) message. This is very similar to the flight plan messages, with exactly the same data-fields.
However additionally the message contains a position observed by a connected ATC surveillance data
processing system. The actual position is a geographic 4D position in latitude, longitude, altitude and
time. Alternatively to the Correlated Position Report, the aircraft operator can also provide information
when airborne. Long haul flights that are outside of the Network Manager Operation Centre can send
its current geographical position, or an estimated arrival time to the network manager via the Aircraft
Communications Addressing and Reporting System (ACARS). This can be included in a message as
well, which is called an aircraft operator position report. These messages are enriched with data-fields
similar to flightplan or CPR messages. In the future, the aircraft operator position reports may become
a more frequent type of message, as more and more aircraft are equipped with ADS-C. This air-ground
data-link allows the aircraft to share its intended flight profile as a 4D trajectory with an ANSP, airline
operation centre or the network manager.

6.2. ADS-B Data
Automatic Dependent Surveillance-Broadcast (ADS-B) is a surveillance system that is periodically
transmitting aircraft position and states parameters. The signal can be received with relatively sim-
ple receivers on the ground, in other aircraft, or even by satellites. The technology does not rely on
interrogation signals by radar systems, as the onboard squitter equipment is broadcasting automat-
ically. In the future, ADS-B systems may be able to replace secondary surveillance radar, and the
technology is mandated by the FAA and European Union Aviation Safety Agency (EASA)[10]. This
has caused very high levels of equipage on aircraft nowadays. Because the broadcasting signals are
not encrypted, any receiver of the 1090MHz frequency can receive and decode the ADS-B messages.
There are a variety of parties that have implemented a network of receivers covering large parts of
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the world. An example of such a network is the OpenSky Network. This organisation has a historic
database of ADS-B messages to which researchers can apply for access. This thesis thankfully makes
use of the data provided by the OpenSky Network.

ADS-Bmessages are 112 bits long and have fivemain parts: The down-link format, transponder capabil-
ities, aircraft unique ICAO address, the extended squitter message, type code, and Parity/Interrogator
ID [52]. For this research the ICAO address is important to collect information of entire flights. The type
code is used to identify the contents of the broadcast, and the extended squitter message contains the
parameters itself. Table 6.1 shows what parameters are transmitted in the ADS-B messages. Note
that the table is only a summary of the primary contents. For efficient and reliable transmission, some
messages are encoded and/or split over multiple messages. In this case some bits are reserved to
include decoding keys. These details are left out of scope, as the data received from the OpenSky
Network is already decoded.

Table 6.1: Summary of the most relevant data parameters included in the \ac{ADS-B} messages

Type Code Data Frame Content Variables Unit

1–4 Aircraft identification Call-sign
Wake Turbulence Category

-
-

5–8 Surface position (on ground only)

Latitude
Longitude
Ground Speed
Track
Unix timestamp

deg
deg
kts
deg
s

9–18 Airborne position (Baro Altitude)

Latitude
Longitude
Baro altitude
Unix timestamp

deg
deg
ft
s

19 Airborne velocities
Vertical rate
Ground speed (North/East)
Airspeed (North/East)

ft/min
kts
kts

20–22 Airborne position (GNSS Height)

Latitude
Longitude
GNSS altitude
Unix timestamp

deg
deg
ft
s

31 Aircraft operation status
Operational capabilities
Data integrity & accuracy
Track

-
-
deg

The ADS-B broadcaster sends this information according to a specific scheme, depending on the state
of the aircraft and transponder setting. Combining multiple broadcasts with different information can
reproduce the actual state of the aircraft. The OpenSky Network obtains the raw messages from the
connected receivers and decodes this into complete messages. The data is enriched with for example
the aircraft type and registration, which can be obtained from an ICAO id aircraft database. Call-signs
and flown tracks can be used to find origin and destination airports. The Traffic python toolkit developed
by Olive [41] is used to access the ADS-B data. As explained in Table 6.1, the messages contain
the actual 4D positions of aircraft: Latitude, longitude, altitude and timestamp. This data will be the
reference for the machine learning model to train on.

6.3. Weather Data
Flight trajectories are highly influential to weather conditions. As aircraft physics and sensors are ex-
pressed in a reference frame relative to the air-mass, changing wind conditions will directly change the
ground speeds. In turn, this results in different trajectories. Furthermore, convective weather such as
thunderstorms are usually avoided, as they may interrogate safe flight execution. Lastly, also tempera-
ture plays a role in the performance of the aircraft, particularly the cruise speed and climb performance.
All these elements may contribute to deviations observed between the planned trajectory and actual tra-
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jectory. It is therefor decided to explore the possibilities of predicting trajectories given a set of weather
conditions. Having studied the results of Liu et al.[33], their machine learning model is capable of in-
cluding weather conditions ahead of the trajectory via a grid matching algorithm. This grid contains
the southerly and westerly wind components, air temperature, and convective weather parameters for
13 altitude levels and a spatial resolution of 20x20 nautical miles. The weather forecast and current
conditions are updated every four hours, with predictions for every hourly window. This data comes
from the North American Mesoscale Forecast system and the National Convective Weather Forecast
system. Although implemented successfully, these datasets are not available to the European area
of interest in this thesis. A European alternative to the wind and temperature data can be obtained
from the ECMWF ERA5 database. This is a publicly available dataset that has hourly estimates of
meteorological variables. The spatial resolution of the model is 30km and the pressure altitude reso-
lution contains 37 levels ranging from 1000hPa to 1hPa. Because aircraft usually do not fly at such
high altitudes, the levels up to approximately FL480 can be taken. The standard atmosphere pressure
formula is given in Equation 6.1, and temperature equation in the troposphere is given in Equation 6.2
(Anderson[2]). Where P is a pressure at a given altitude, g0 the earths gravitational acceleration, T
temperature, dT

dh temperature lapse rate with altitude, h the altitude itself, and R is the gas constant.

Palt

P0
= (

Talt

T0
)

−g0
dT
dh

R (6.1)

Talt = T0 +
dT

dh
(h0 − halt) (6.2)

With these equations, knowing the temperature lapse rate, ground level temperature and gas constant
in the troposphere, it can be determined that 125hPa is a suitable maximum level. This leaves 26
discrete levels with meteorological conditions that can be used. The ERA5 database has a spatial
resolution of 30x30km and contains temperature, vertical air movement, northerly wind & easterly wind
components. In this respect a similar or even better resolution can be obtained. However there is no
convective weather dataset publicly available for the European situation. In case there is an opportunity
to implement this data, a new grid may have to be established to merge the wind, temperature and
convection attributes. The available features of the ERA5 weather dataset are given in Table 6.2

Table 6.2: The weather data features provided by the ERA5 dataset of the ECMWF. The grid resolution is 30x30km, with 26
pressure levels. The data is obtained from hourly observations.

Variable Unit Description
Air Temperature K Average temperature of the local atmosphere
V wind component m/s Northerly wind component (North positive)
U wind component m/s Easterly wind component (East positive)

Vertical air velocity Pa/s
Vertical velocity of the air mass in the grid.
In Pascals (pressure altitude) per second.
(Downward motion is positive)

6.4. Filtering & Pre-processing
As with any dataset there are always impurities, missing entries, or outliers. Before model develop-
ments start, it is important to analyse the data and to create a development strategy. Data can only be
analysed when it is available in the right format. Furthermore it is important to filter out the samples
that are erroneous or unsuitable. Different levels of pre-processing and filtering are required for each
dataset. For example, the B2B data requires a lot of preparation. Once extracted, the data is already
of high quality, so only a few filtering operations are required. For ADS-B data, this is the other way
around, with an emphasis on filtering. Nonetheless, it is important to first determine what data is re-
quired exactly. This research aims at generating trajectories at 3 hours before arrival in the Dutch FIR.
For most flights this means that the aircraft is still on ground, hence the entire trajectory is to be gen-
erated. The selected model will be a transformer neural network type, which is capable of predicting
new sequences from an input sequence, based on learned output sequences. The model will be build
in python with the PyTorch library 1, which requires input in a [sequence, batch, feature] format. The

1https://pytorch.org/docs/stable/generated/torch.nn.Transformer
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batch contains a set of flights, the sequence are timesteps and the features can be any type of data
that influences the actual trajectory. In essence, this translates into a flightplan as input time sequence,
where the features are latitude, longitude and altitude. The desired output sequence is a trajectory
with the same features, albeit with a different length and temporal resolution. The sequence which the
model should train on must therefor be the corresponding trajectory from the ADS-B data. This means
that the primary input flightplan from the B2B data should be matched with the actual ADS-B trajectory.
When the messages are matched with the actual recorded flights from the B2B data, the actual arrival
time at the FIR boundary will also be known. With this information the latest message three hours
before arrival can be selected.

6.4.1. Pre-processing for analysis
B2B data preparation
In this phase of the research, a dataset of B2B messages from the Eurocontrol Network Manager to
LVNL during may 2021 is available. Because of the COVID-19 pandemic, traffic numbers are lower
than in the years before, with around 400 flights each day. It would be preferential to have a dataset that
covers a more representative period, but this data is not available as of yet. Themessages are provided
in an XML format, which must first be parsed into a python processable format. During the entire project,
the pandas library 2 is used with a data-frame structure that contains the data. The dataframe is then
filtered for arriving flights only. The flight plan does not contain the locations of waypoints, which are
looked up with the Eurocontrol navigation and airspace database. The latitude and longitudes are
converted to degrees, altitudes are rewritten to flightlevel, and timestamps are specified in UTC date-
time. Besides having the actual scheduled time at the waypoints, a flight duration time is calculated as
well. This is calculated based on subtracting the scheduled take-off time from the estimated overhead
times. Additional information in the B2B messages such as timings, aircraft parameters and airspace
crossings are also saved. Part of this information is used to match the corresponding ADS-B trajectory
to themessage. This is done with the flight callsign and the day of the flight. Other information contained
in the B2B messages is saved, but not yet prepared. There may be valuable information that can
improve the model, but this will be explored once more complex varieties of the model are build. The
final step is to find the FIR arrival time from the flight plan. This is done by re-sampling the flightplan
at a 10 second interval via interpolation between the waypoints. The resultant is then checked as to
which part is inside the FIR airspace. The final data-point before entry is selected as the FIR entry time.
This is the most important element for the demand predictions.

ADS-B data preparation
The ADS-B data is retrieved from OpenSky with help of the traffic package developed by Olive [41].
This is a python based toolkit that has numerous data processing and filtering capabilities, which make
it a straightforward operation. A query is made that retrieves all flights recorded to arrive at Amsterdam
Airport Schiphol for each day in the B2B messages dataset. As Sun[51] explains, almost half of all the
ADS-B messages are corrupted. Although the retrieved data from OpenSky is already pre-processed,
there may still be errors present. A filtering operation is applied that can effectively removemost outliers.
Missing datapoints are also fairly common, especially in areas where coverage is harder to accomplish.
For example the Atlantic ocean, or less populated continental areas. The trajectories are therefor
smoothed and re-sampled every 10 seconds, which interpolates between upstream and downstream
datapoints. In this research the FIR entry time is the primary element for demand predictions. Therefor
the trajectories are checked as to which part is inside the FIR. This part is removed and the last data-
point of the remaining trajectory will be taken as the FIR entry point. Finally the actual trajectories
are matched with the B2B messages. With the flight callsign, date, and registration, the flights can be
matched correctly. The actual FIR entry time can be added to the B2B messages. This allows to select
the latest message three hours before arrival, as this message will be the main model input.

6.4.2. Pre-processing for neural network modelling
For neural networks such as the transformer to be effective, the input data quality is of utmost impor-
tance. In principle, all neural networks learn to recognise statistical patterns within the training dataset
and project this on newly derived samples. Consequently, a well-known statement associated with neu-

2https://pandas.pydata.org/

https://pandas.pydata.org/
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ral networks is that garbage input will yield garbage output. For this reason a lot of effort must be put on
selecting the right variables and providing these variables in a proper format. The selected transformer
neural network will be build in the python PyTorch environment. The input for a transformer neural net-
work, or any other type of sequence modelling network is of the structure [sequence, batch, feature].
Where the batch contains different flights, the sequence contains the timestamps and the features are
to be defined. In previous sections it was already explained that the primary features are 4D position
sequences. First a geographical coordinate system transformation is required to effectively model lat-
eral positioning. Other required feature engineering practices are one-hot-encoding for non-sequential
categorical variables, and normalisation for unbounded variables.

Geographical Coordinate System Transformation
Both the flightplan and actual trajectory are provided in a spherical coordinate system, with latitude (ϕ)
& longitude (λ) in degrees and height (h) in feet. Neural networks are very sensitive to different data
formats, and many studies have shown that it is necessary to provide Cartesian (x, y, z) coordinates as
input (e.g. Overkamp[43] & Tran et al. [57]). The chosen reference frame will be the ENU reference
frame with respect to the local tangent on the sphere. Where North, East and Up are positive. To make
this transformation, first the spherical coordinates must be expressed in the ECEF reference frame.
This is done with Equation 6.3 and Equation 6.4. In this equation a is the equatorial earth radius and b
is the polar earth radius. Then the tangent can be determined and the coordinates can be expressed in
the local Cartesian reference frame. This is done with Equation 6.5. For this transformation a reference
(Xr, Yr, Zr) location is required. Because the sequence generation task spans three hours of flight, the
flat surface of the ENU reference frame will give errors if it is placed on a fixed reference location.
It is therefor decided that the reference will be at the aircraft location for each sample and that the
conversion is made with every data-point in the sequence. This is a similar strategy as applied by Tran
et al.[57]. Alternatively, Amsterdam Airport can be selected as the reference location since almost all
flights converge there. A schematic overview of the reference frames is shown in Figure 6.13.

Xc = N(ϕ) + hcosϕcosλ

Yc = N(ϕ) + hcosϕsinλ

Zc = N(ϕ) + hsinϕ

(6.3)

N(ϕ) =
a2√

a2cos2ϕ+ b2sin2ϕ
(6.4)

xy
z

 =

 −sinλr cosλr 0
−sinϕrcosλr −sinϕrsinλr cosϕr

cosϕrcosλr cosϕrsinλr sinϕr

Xc −Xr

Yc − Yr

Zc − Zr

 (6.5)

Figure 6.1: Different reference frames used for geographic positions: Yellow reference frame is the spherical coordinate
system. Blue is the ECEF reference frame. Green is the Cartesian ENU reference frame.

3https://commons.wikimedia.org/wiki/File:ECEF_ENU_Longitude_Latitude_relationships.svg

https://commons.wikimedia.org/wiki/File:ECEF_ENU_Longitude_Latitude_relationships.svg
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Weather data matching
In order to include the weather data in the model, there are multiple methods which are to be tested
for effectiveness. As discussed, the sequential nature of the input data may force an approach similar
to Liu and Hansen[33] for the wind and temperature matching. Here, a matching algorithm is made
that looks up the weather parameters in a grid up to 120km in front of the aircraft. Thereby effectively
including a large region with every prediction. The downside of this may be a relatively large input which
slows down training. Nevertheless, the results of this method do show accurate responses. Another
possibility is to have a separate neural network that is not relying on sequential data to first process
and encode the entire meteorological dataset. The encoded information can then be passed to the
decoder together with the encoded B2B data input. This approach is taken by Zhang et al.[67], who
apply a convolutional neural network encoder block to make a weather feature input. Both approaches
will be explored during the modelling phase of the research.

Feature engineering
Part of the data that can be used as feature is not sequential but stays constant for the whole flight.
For example the origin, aircraft type, operator, or callsign do not change. These values are usually text
based features, which are not easily processed by a neural network. This can be solved by categorising
variables if the entire set of values is known and bounded. One-hot-encoding can be applied, which
changes text into numerical vectors. For example if three airlines are present in the batch of flights:
KLM, Scandinavian & Lufthansa, one-hot-encoding will assign a vector of length three with a binary
value for the actual category. KLM will be represented by the vector [1,0,0] and Scandinavian with
[0,1,0]. The resulting variable is much easier to parse through a neural network and is called a dummy
variable.

Data features that are not categorical cannot be encoded as dummy variables. However there may
still be a correlation or dependency between the feature and the output. Variables that may become
unbounded can have an undesirable impact on the weights in the neural network. For example delay
is usually a low value, or only a couple of minutes. But if then a value of 8 hours is present in the
dataset, this may return exploded results of the network. Normalisation techniques bound such values
by analysing the entire dataset and scaling the values accordingly. Min-Max normalisation is most
commonly used, which is shown in Equation 6.6. This can be applied to delay, taxi time, altitude,
wind-speeds, latitude and longitude.

x′ =
(x− xmin)

(xmax − xmin)
(6.6)

In a sequence generation task, time is arguably the most important feature. Extra care must be taken
in deciding how to parse timestamps and other time information. Not only is it important to concisely
use the UTC time, it is also important that trajectories and flight-plans are properly comparable. In
this research, the ground trajectory is placed out of scope. This is partly because the speeds and
performance of the aircraft are considerably different from the airborne part. Also, the calculated take-
off time is often significantly different from the actual take-off time. The goal is to build a TP that can
model the deviations in the airborne trajectory and therefor the flight duration of the flightplan and
the actual trajectory are probably more valuable. For this reason, the take-off time must be filtered
from the trajectory and this marks the start of the sequence. Respectively so for the flight-plan. The
timestamps will then be converted to duration timestamps. However time information may still convey a
lot of information, as a midnight flight usually experiences less traffic and different ATC procedures then
during the day. To include this information, take-off and FIR arrival time are still valuable parameters.
These can be encoded cyclically to make sure that for the network, 23:59 is observably close to 00:01
the next day. This can be done with Equation 6.7, whereH is the hour. Note that both a sin and cosine
are required to avoid equivalency of mirrored times on the sinusoidal period.

Hsin = sin(
2πH

max(H)
)

Hcos = cos(
2πH

max(H)
)

(6.7)
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In conclusion, the data that will be used as features to the transformer neural network may need editing
before successful implementation. It is important that these processes are reversible, as the output of
the model will be in the same coordinate system and order of magnitude. Table 6.3 gives a general
overview of the feature engineering applied before modelling start.

Table 6.3: Overview of all input features and the required feature engineering. Potentially other variables may be added during
the modelling phase of the research.

Time Series Feature Unit Required feature transformation
FPL/ADS-B duration timestamp seconds -

FPL/ADS-B latitude deg Min-Max normalisation
Coordinate system transformation

FPL/ADS-B longitude deg Min-Max normalisation
Coordinate system transformation

FPL/ADS-B altitude ft Min-Max normalisation
V wind component m/s Min-Max normalisation
U wind component m/s Min-Max normalisation
Vertical air velocity Pa/s Min-Max normalisation
Air Temperature K Min-Max normalisation

Static Feature Unit Required feature transformation
Estimated take-off time UTC Cyclical Encoding
Day of week - One-Hot-Encoding/Cyclical Encoding
Month - One-Hot-Encoding/Cyclical Encoding
Pre-departure delay seconds Min-Max normalisation
Origin airport - One-Hot-Encoding
Aircraft Type - One-Hot-Encoding
Aircraft Operator - One-Hot-Encoding

6.4.3. Data analysis
With the available datasets, a preliminary estimation can be made on the current demand error with
the methods based on planned trajectories. For this purpose a simple demand model is build with
the actual FIR entry times obtained from the ADS-B trajectories, and the those from the filed flight
plans. The arriving flights are aggregated in 20 minute interval bins, which is the standard bin size
in current demand forecasts. Because almost all traffic entering the Amsterdam FIR is descending
towards Schiphol airport, the entry flow is assumed to be the actual demand of the airspace. This
differs from Upper Area Sectors, where occupancy duration can change significantly between flights.
In lower airspace the occupancy is different mainly when holding is practised. Having said that, holding
is usually a result of excessive demand and thereby a failed balance between demand and capacity.
As a result, the assumption of entry flow as demand predictor can be applied to give an initial estimate.
With this in mind, an example of a demand forecast for one of the days in the dataset is shown in
Figure 6.2.
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Figure 6.2: (a) Predicted and actual demand of the Amsterdam FIR at the 7th of may 2021. The predicted demand with a
look-ahead time of 3 hours is shown. (b) Error between predicted and actual demand.

Looking at the demand errors, it becomes clear that part of the error is a result of flights arriving just
in another bin then initially expected. This is clearly shown in Figure 6.2(b), where over- and under-
predictions alternate. The highest errors are visible in the demand peaks, where the model predicts the
traffic to arrive in a bunch at 10:00 and 11:00 UTC. This over prediction would lead to regulations and
delays, which is undesirable. When trying to find a cause for such errors, it is expected that the actual
take-off time is a significant element. Different studies have shown this is the case, amongst which the
work of Könnemann[26], and research by LVNL[40]. Looking at the FIR arrival times for three randomly
selected days in the dataset without high delay figures; a Root Mean Squared Error of 23 minutes is
observed. With the error defined as the difference between the actual trajectory and flight plan arrival
time. When the take-off time is known, a straightforward operation may be to add the ground delay to
the arrival time of the flight plan. Doing this yields an RMSE of 17 minutes on the arrival times. The
results for different look ahead times are shown in Figure 6.3. The blue line shows the regular root
mean squared error of the arrival time, and the orange line shows those with the flight plans shifted
with departure delay. Clearly, the error reduces the uncertainty for every look ahead time, which is
in line with the analysis made by Könneman[26]. The measured standard deviation for the errors is
shown with the vertical bars.

Figure 6.3: The error between actual and flight plan predicted FIR arrival time. The orange line shows the error of the
predicted arrival time with the departure delay added. This is significantly lower, which proves that departure time uncertainty is

an important source of error. The standard deviation is shown with the vertical bars.
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The results mentioned above prove that demand prediction errors are partly due to uncertainty in take-
off times. Nevertheless, Tielrooij et al.[55] have pointed out that delayed flights will usually fly faster
to compensate for time lost. A simple delay time-shift of the trajectory is not an independent trans-
formation. When evaluating the errors of days in the dataset that do have high departure delay, the
correction produces errors that are statistically similar to the non-corrected predictions. In this research,
the departure time uncertainty is placed out of scope. However, these results confirm that other errors,
amongst which TP errors, remain a significant element of the total demand error. The remaining portion
of arrival time error as presented in Figure 6.3 may be due to TP shortcomings.

Trajectory prediction error can be calculated by evaluating the altitude, along-track and cross track
error. For the same datasets as the previously discussed demand errors, this is shown in Figure 6.4.
The error is calculated for the estimated time overhead each waypoint and the actual position at that
timestamp. Clearly the along track error becomes increasingly uncertain for longer look ahead times,
which is to be expected. Cross track errors remain relatively constant because the direction of the flight
does not change too much; the destination and therefor general track is constant. Similarly, the altitude
error is also relatively constant, as the most efficient cruise altitudes and constrains do not change
significantly.

Figure 6.4: Error box plots for the (a) along track error, (b) cross track error, & (c) altitude error. The error is evaluated between
the flight plan waypoints and the actual trajectory, based on the actual timestamp.

The error metrics in Figure 6.4 are evaluated based on the filed overhead times of the waypoint. This
includes pre-departure delay, hence it does not reflect the true performance of the TP that calculates the
flight profile from the flight plan. The true TP modelling capabilities can be evaluated by changing the
time evaluation to a duration evaluation. When both the flight plan and actual trajectory start at t=0, the
timestamps can be used to directly measure positional and altitude error. Doing this, a similar analysis
can be made in Figure 6.5. The cross track and altitude error and variance do not change significantly.
However, the along track error does show different behaviour. A significantly smaller error increase is
found with look ahead times that are further out. The reason for this can be two folded. Either the flight
plan based trajectories have a reasonably constant predictive performance, and/or the flight plans are
not updated frequently. The latter is a relevant finding, as it was expected that NM would distribute
updated information on flight position and aircraft intent in the tactical phase through the flight plan
based trajectory. However in this specific dataset, this appears not to be the case. Arguably, this may
make the use of B2B data non-unique compared to other flight plan datasets. However, if in the future
the planned trajectory is updated, the TP improvements can be significant. Hence it is still a relevant
data source. Moreover, the errors observed in Figure 6.5 are large enough to contribute significantly
to demand errors. This shows that trajectory prediction indeed requires improvements.
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Figure 6.5: Error box plots for the (a) along track error, (b) cross track error, & (c) altitude error. The error is evaluated between
the flight plan waypoints and the actual trajectory, based on the flight duration timestamp.

Examining a random flight in the dataset and visualising the trajectory may prove the error in more
detail. Figure 6.6 shows an example of a flight from Malaga to Amsterdam on may 6th 2021. The red
line is the filed flight plan at 3 hours before arrival in the FIR. The blue line is the actual flight trajectory
obtained from ADS-B data. Two main differences are observed: In the lateral profile, the flightplan
contains waypoints that are offset from the great circle (shortest track). This is primarily due to routing
via airways which are not exactly aligned with the shortest route. Also, there may be military airspaces
which are expected to be closed, so the flightplan must file around these sectors. The true trajectory
shows that the flight did not entirely adhere to the flightplan. In central Spain the flight was allowed to
fly direct towards Bordeaux. Also above France a couple of corners were cut. This may result in an
early arrival.

In the vertical profile, the most obvious difference is the change of cruise altitude from flightlevel 400
to flightlevel 380. This may not have a direct influence on arrival time, but the cruise speed and re-
sultant ground speed are affected by it. Planned cruise speed information is not retrievable from the
current B2B messages dataset, so these performance differences cannot be evaluated. However, the
final result of trajectory differences between planned and actual are highlighted by the error mark in
Figure 6.6(b). The arrival time error due to TP error is found to be 4 minutes for this flight. That may
seem like a relatively small error on the scale of 3 hours look ahead. However, for Schiphol the traffic
demand in the peak hours can be on the edge of the available capacity. A 4 minute early arrival, or a
delay of a couple of minutes may just be enough to issue a regulation. Especially when this error is
present in a large number of flights. Referring back to Figure 6.3, the total error when using only flight
plan based trajectory predictions is still relatively high. A gain of a couple of minutes on the error can
mean a lot to the predictability of demand.

Figure 6.6: Visualisation of the actual 4D trajectory (blue) and the filed flight plan (red) of flight on may 6th 2021. (a) Lateral
flight profile, (b) Vertical flight profile.
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Another interesting disadvantage of relying on the flight plan is that entry locations of the flights are
fixed on airways or arrival routes. In reality, deviations, runway changes, and vectoring can change the
entry points significantly. The arriving flights of a single day in the dataset are shown in Figure 6.7(a).
In Figure 6.7(b) the respective flightplan entries are shown. This figure clearly shows the degree to
which the actual flights differ from filed flight plans.

Figure 6.7: (a) Filed flight plans up to FIR entry on may 15th 2021, with a look ahead time of 3 hours. (b) Actual flights up to
FIR entry on may 15th 2021

Flights that have a different entry point but still have an accurate arrival time may not be a big problem,
given that the FIR is a single sector. In reality, the FIR is subdivided into different blocks of airspace.
For this research, the sectors that are of importance are the area control centre sectors. The upper part
(FL195-FL245) of the Dutch airspace is divided into five different sectors that are controlled by LVNL.
The sectors are originating from the SPY VOR beacon and denoted by the black areas in Figure 6.7. If
flights have a different entry point then planned, this may influence the demand forecast if the change
results in a different entry sector. Furthermore, a different entry point or altitude will also influence the
sector occupancy time. Both these effects can be improved with a data driven trajectory predictor such
as the transformer neural network.



7
Model Development & Analysis

7.1. Development of predictive models
The next phase of the research is to start building predictive models. The chosen methodology is to
first build a trajectory predictor based on the transformer neural network architecture. This model then
provides the entry point and entry time of flights to the subsequent demand predictor model. A sim-
ple iteration of a demand predictor was already build to analyse demand forecasting performance with
the methodology applied in current operations. The baseline results have been discussed in subsec-
tion 6.4.3. Both predictive models must be developed towards a comparative experiment, which is
explained in the following sections.

7.1.1. Trajectory predictor development
As discussed previously, the demand forecast error observed in operations currently is often too uncer-
tain due to trajectory predictor error. Although efforts have been made to bypass a TP entirely, novel
machine learning models may be able to deal with some of the limitations in conventional trajectory
prediction. Most importantly the ability to capture alternative routes as shown by Liu et al.[33] amongst
others is promising. This research proposes a deep generative trajectory prediction approach to im-
prove the demand forecasting. The selected methodology will be the transformer neural network that
was introduced by Vaswani et al.[58].

Building a machine learning model is an iterative process, due to the large amount of parameters that
can be specified. The number of layers, layer size, number of attention heads, learning rate, cost func-
tion and optimiser are some of the many variables. The performance of the model is highly dependent
on these parameters and the training that is performed. A clear strategy to obtain an optimised model
does not exist. Nevertheless a development roadmap is set up to provide a step-wise modelling ap-
proach. First of all, a single cluster of flights, or origin region is selected that has enough flights to
begin modelling. This could for example be flights from Spain to Amsterdam. In this way the solution
space is kept within bounds. The model building begins with a very simple model, both in terms of input
features and in layer complexity. First, the input features will only be the 4D sequences of the flight plan
and actual trajectory. The initial model will only contain a few layers with a default number of attention
heads (8). The model can then step-wise be expanded with another layer or another feature from the
available dataset. Other parameters will be specified on an iterative basis. Furthermore, overfitting
measures such as batch training and dropout are applied in this step as well.

Once the first simple model iteration has reached a satisfactory level of detail, the model can be ex-
tended to include different groups of flights. Initially the results for a diverse set of flights will be tested
to see if the transformer neural network is capable of capturing the different characteristics. If this is not
the case, clustering may be required to group flights. DBSCAN is a proven clustering technique and
will therefor be applied if necessary. Consecutively, different models will be trained for each cluster.

After the extension of the model to different city pairs, post processing methods will be implemented.
Different studies have shown that it is not a straightforward operation to extract smooth trajectories
from a neural network. The output is a set of Gaussian mixtures, where the attribute with the highest
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probability is usually taken as the prediction. If the variance is too high, this may return zig-zag output
trajectories. Kalman filtering, log likelihood calculation or other smoothing algorithms may be required
to infer a smooth output trajectory. When the demand predictor is build on probabilistic basis, the
Gaussian mixtures output may be valuable. In this case the smoothing may not be required, but this is
yet to be investigated.

Depending on the time and success of the conceived model, alternatives to a transformer with encoder-
decoder structure may be worthwhile exploring. If sufficient time remains, the R-Transformer network
developed by Wang et al.[60], will be on the shortlist to develop. This model combines a local recurrent
neural network with multi-headed attention layers, which may be able to better capture local patterns
within the feature sequences. If this model will be developed, a similar development strategy as men-
tioned above will be applied. Finally, it must be noted that the machine learning models will be trained
on a dataset with a sufficient amount of flights, which are representative for normal operations in the
Dutch FIR. The size of the dataset will be determined based on the first modelling efforts. This also
depends on how much of the dataset will be used for training, testing and validation.

7.1.2. Demand predictor development
The demand predictor module of the research is not the most complex part, but nonetheless important.
For initial data analysis, a simple model was already developed that predicts demand by calculating the
arrival time in the FIR from the flight plan. This information is aggregated in bins of 20 minutes, which
is effectively the sector entry flow. Because the demand in this specific situation is directly dependent
on the arriving traffic flow, the assumption holds that sector demand may be modelled with arrival
times. In the further stages of the research this demand predictor logic is to be extended to calculate
actual demand. Furthermore, if sufficient time remains, a different demand forecasting model may be
developed to compare the performance of the TP based model with an alternative demand model.

To further develop the demand forecasting model, there may be different paths that can be chosen.
Before selecting an approach, it is important to keep in mind the problem statement. Namely to improve
the demand forecast with machine learning based trajectory prediction. Given that this method is
already applied to the flight segment before sector entry, no real necessity remains to extend this into
the demand forecasting. Henceforth, the demand forecasting module should be consistent for each
method such that the results are comparable. In order to evaluate demand instead of sector entry
flow, one possibility is to calculate sector exit times with statistical records on the basis of e.g. aircraft
type, runway usage, aircraft operator amongst others. This would yield equivalent results for every TP
driven method. Another possibility that will be explored is to obtain the sector exit time by extending
the TP calculation through the sector. However, due to the large amount of vectoring applied by air
traffic control, the results are expected to be of lower quality.

Once the demand prediction module is completed and the planning allows it, another methodology may
be explored to compare results in the experiment. Sector flow models such as the one developed by
Menon et al.[37] are likely too extensive for the scope of this research. A probabilistic model on the
other hand may be feasible to implement. Such a model can be applied relatively straightforward if
the Gaussian mixtures of the trajectory predictor are available. A probabilistic model then aggregates
the probabilities of aircraft demand based on the uncertainty of arrival time in the TP. This is less
straightforward for the conventional flightplan based methodology, but Gilbo et al.[21] have shown that
this can be bypassed by modelling the arrival times of aircraft as a Gaussian distribution. Last but not
least, the current demand predictor in the LVNL decision support tool also has a corrective model based
on a random forest regressor. The results of this model may be compared with the demand forecast of
this research.

7.2. Experiment set-up
Once the trajectory predictor and demand predictor have been developed to a satisfactory level, an
experiment can be designed to test the model and answer the research questions. As mentioned, the
baseline model will be an auto-encoder transformer neural network that has a flightplan sequence as
input, and generates a 4D trajectory up to the Dutch FIR. The trajectory is then used as input to the
demand predictor. The performance of the model is subsequently tested and compared to the actual
demand from the recorded ADS-B trajectories. Nevertheless, different models are developed, which
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include different features or have different architectures. The experiment will therefor be tasked with
comparing the different results and finding the optimal combination of features, model complexity, and
architecture. Currently the experiments listed in Table 7.1 are foreseen.

Table 7.1: Planned experiments to evaluate the performance of the different model varieties and the effect of different input
features. Baseline experiment 0 was already developed in chapter 6.

Experiment Model Features

0 (baseline) TP: Flight plan
Demand: Basic TP based model Flight plan

1 TP: Simple Transformer Network
Demand: Basic TP based model Filed flight plan, ADS-B trajectories

2 TP: Extensive Transformer Network
Demand: Basic TP based model

Filed flight plan, additional flight info
& ADS-B trajectories

3 TP: Extensive Transformer Network
Demand: Basic TP based model

Filed flight plan, additional flight info,
Weather & ADS-B trajectories,

4 TP: Best model from exp. 1- 3
Demand: Probabilistic TP based model

Best performing feature set from
experiment 1- 3

5
TP: N.A.
Demand: Simple machine learning
aggregator (e.g. Random Forest)

Planned ETA at FIR boundary

As mentioned before, building a machine learning model is an iterative process, and along the way new
insights may be found. Potentially this can lead to a different schedule of experiments or a slight change
of model and feature selection. However, the plan is to stick to the philosophy of the listed experiments
in Table 7.1. In the following phase of the research, the models will be build and the experiments can
be worked out in more detail. Exact feature specification and model architecture are to be determined,
after which the actual experiments can be performed.

7.3. Results & Analysis
The objective of this research is to improve air traffic sector demand forecasting in the tactical domain,
by exploring machine learning based trajectory prediction. The experiments have been designed in
such a way that it can answer the research question and hopefully meet the objective. In this litera-
ture study the first sub questions of the research question have already been answered. For example
the transformer neural network is derived from literature as the most promising and suitable machine
learning model for the TP task (subquestion 6). Also, in chapter 6, the most relevant features and
parameters have been identified and processed for the demand and trajectory prediction models (sub-
question 1&4). What remains to be answered is the performance and applicability of the different TP
models on demand forecasting for air traffic sectors in the Dutch FIR. The performance will be evaluated
on the demand predicting capabilities. Both the prediction accuracy and uncertainty will be evaluated,
based on a large enough validation dataset. This dataset will never be used for training or testing the
model, hence is completely independent. The accuracy can be calculated by error metrics such as
the Root Mean Squared Error, Mean Absolute Error or R2 value. The uncertainty of the predictions
will be measured by calculating the variance and standard deviation of the distribution. The standard
deviation is used to compute a 95%-confidence interval. The higher the spread of the error distribution,
the more uncertain the predictions and the wider the confidence interval. This way, the performance of
the different experiments can be evaluated and compared to the baseline.

Although demand forecasting is the primary goal of the research, this research is a result of the general
movement within Air Traffic Management to move towards a trajectory based operation. The predicted
trajectories are equally important to the academic field. For this reason the predictive accuracy and
uncertainty of the TP models will be extensively reviewed as well. The along track, cross track, hori-
zontal and vertical error will be evaluated with similar metrics as the demand accuracy and uncertainty.
If during the following phases of the research different results are found to be of value, these will be
disclosed as well.
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Research Planning

This research project is structured into four distinct phases. An overview of the phases and the more
detailed work out of this is shown in Figure 8.1. The main phases are:

1. Literature study: The first stage of the research is to identify the problem, formulate a research
objective, and describe a research question. This is done through studying and reporting on
related academic work and operational documents. This phase is completed and documented in
this report.

2. Data collection and preparation: During this stage of the research, all required data is gathered
and analysed to support the research question and literature findings. Also during this phase, a
strategy for model development is worked out. This phase is completed and documented in this
report.

3. Model development: The following phase includes all the work that is to be done in order to
run the experiments that are required to answer the research question. The model is developed
based on the strategy worked out in phase 2.

4. Results and analysis: The final step in the research is to perform the experiments and to analyse
the results. The different models & experiments are compared, and conclusions can be drawn.

The first two phases of the research project have been finished, with the literature study and data
preparation completed. The next phases are to develop the different models and set up the experiments.
Once the experiments are performed, the results can be analysed. The dataset derived from the initial
data processing will be used to build the different models and experiments. If during the following
phase a more suitable dataset will be made available, then this will be implemented instead. A detailed
planning is presented in Figure 8.1, which serves as a guideline for the remainder of the research
project.
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Figure 8.1: Gantt chart with the current planning of the research activities. Green activities have been completed and blue
activities are scheduled. The vertical white bars mark the holidays during which no work is scheduled.



9
Conclusion

In current Air Traffic Management operations, many processes contribute to a safe and efficient ex-
ecution of flights. Demand and capacity balancing is an important element to ensure that controlled
airspaces are not overloaded with traffic. LVNL, the Dutch ANSP, introduced a decision support tool
that makes a forecast of the expected traffic load in the coming hours. Simultaneously, this tool pro-
vides options to manage excessive traffic flows to the air traffic controller supervisors. Although this
tooling gives a reasonably accurate forecast, significant errors may still be observed that cause un-
necessary or ineffective interactions. For example, imposing delays on aircraft that are yet to depart.
Delays are undesirable, especially if the delay was not required in hindsight. The demand prediction
system currently in place is based on flight information received from the Eurocontrol Network Manager,
which does not always yield the best results. Better predictions of demand can increase the effective-
ness of the demand & capacity balancing process. Therefor this research objective is to improve air
traffic sector demand forecasting in the tactical domain, by exploring machine learning based trajectory
prediction. The research question that is asked to reach the objective is the following: To what extent
can machine learning be applied to long term trajectory prediction, and how can its output contribute
to demand forecasting of a particular air traffic sector?

First, to answer the research question, demand forecasting was investigated in chapter 3. Nowadays,
operational systems rely on flight plans or trajectories that originate from a central provider, such as
the Eurocontrol ETFMS or the FAA TFMS system. Although flight plans give a basic indication of the
flight execution, it still contains too much uncertainty for reliable demand predictions. The departure
time of flights is a big source of uncertainty, and actual flights deviate from the plan very often. Different
improvements have been proposed, amongst which a probabilistic demand predictor, or HiddenMarkov
Model, to optimise trajectories for demand. Trajectories however are not the only way to forecast
demand. Aggregate demand prediction does not specify individual flight trajectories, but rather models
a whole network of sectors that interact via flows. This is called a sector flow model, and only general
flight information is required. Various research efforts have proposed these models and proven them
to be more effective at long term demand predictions than flight plan based models. Nonetheless,
this research will focus on demand prediction through trajectories. This method is selected primarily
because of the general ATM development direction towards a Trajectory Based Operation.

Moreover, based on the chosen direction of a trajectory based approach, chapter 4 explores the trajec-
tory prediction methodology. Two different classes have been identified: Model based or data driven
trajectory prediction. Conventionally, trajectory prediction is based on an aircraft performance model,
which contains performance parameters such as cruise speed, climb rates or fuel consumption for dif-
ferent aircraft in a variety of flight conditions. The trajectory is derived from extrapolating an initial state
& intent, via a behaviour model and a mathematical model. This method is used in most of the current
demand forecasting applications. The second class of models is data driven trajectory prediction. This
type of model relies on big datasets containing trajectories, and tries to apply a mathematical model
to describe samples in the dataset. Most of these models are machine learning algorithms that gen-
erate or extrapolate a trajectory based on previous aircraft states. Hidden Markov Models or varieties
of recurrent neural networks have been widely adopted in academic research. Drawing comparisons
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between the two methodologies, there is no clear winner. This is primarily due to the large variety of
application. When choosing a method, the application and objectives are very important. This research
focuses on the long term generative trajectory prediction. On long term predictions, model based TP
is limited by a lack of intent information. Data driven approaches may bypass this by statistical pattern
recognition. Therefor, a data-driven approach is selected.

Third, in chapter 5, machine learning models that are relevant to demand forecasting or trajectory
prediction are discussed. Looking at the latest academic research, most of the developments focus
around neural networks. For demand forecasting, the convolutional neural network and graph neural
network were discussed, where especially the latter has shown significant improvements. In trajectory
prediction, clustering and recurrent neural networks such as the LSTM network are amongst the latest
developments. Clustering can either be applied to predict a global trajectory, or to group flights for
more effective modelling with a subsequent TP. The LSTM neural network was used by different re-
searchers to generate trajectories pre-departure. These results show the feasibility and potential gains
of such models within the three hour look ahead time that is of interest to this research. Nonetheless,
there are different models that may be promising but are yet to be applied on the trajectory prediction
domain. Especially the transformer neural network is found to be a promising methodology. In differ-
ent sequence-to-sequence modelling tasks, such as language processing, this method has proven to
converge much faster with equal or better results. For this reason, the transformer neural network will
be developed to generate trajectories in support of demand forecasting.

Moving on,chapter 6 explains the available data and required pre-processing in detail. This research
is a collaboration between the TU Delft and KDC mainport Schiphol. For this reason, the area of inter-
est is the Netherlands airspace. The available data consists of flight information messages from the
Eurocontrol B2B services to LVNL, and actual ADS-B trajectories from OpenSky. The B2B dataset con-
tains flightplan and general flight information. The ADS-B data contains the actual 4D flight trajectories
of flights that arrive to the Netherlands airspace. Additionally, weather data from the ECMWF ERA5
model may be used in further model development. The dataset used for analysis is from may 2021. A
simple demand predictor model was build, which was used to quantify current prediction errors. Also
the errors between actual and flight plan based trajectories were evaluated. These insights serve as a
baseline for further research. Lastly, required data pre-processing for the transformer neural network
was discussed.

Finally, chapter 7 discusses the proposed model development. The development strategy is largely
dependent on available time and resources, but primarily focuses on first building a simple transformer
neural network for trajectory prediction. This will then be extended with additional data features and
model complexity. The demand predictor will be extended from entry flow to complete demand pre-
diction. When time allows, a simple machine learning aggregate model may be build to compare the
performance of different methods. The goal of the following phase is to conduct and analyse the five
experiments that have been designed. To conclude, chapter 8 gives a planning and overview of the
remaining two phases of the research.
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