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Abstract—Reducing uncertainty in air traffic flow management
is crucial for maintaining safety and efficiency in modern
aviation. Additionally, forecasting Actual Take-Off Times (ATOT)
for flights across Europe is particularly challenging due to the
diverse flight-specific variables and operational conditions. This
study focuses on enhancing ATOT prediction for flights arriving
at Amsterdam Schiphol Airport from European out-stations
by leveraging machine learning techniques, specifically a Long
Short-Term Memory (LSTM) neural network, augmented with a
Multihead Attention mechanism. A model capable of capturing
complex temporal dependencies and operational factors influenc-
ing the ATOT is developed utilizing data from Electronic Flight
Data (EFD) messages, weather reports and a EUROCONTROL
dataset. The model’s performance is evaluated against traditional
ensemble methods and the current Decision Support Tool (DST)
system used by Luchtverkeersleiding Nederland (LVNL). Results
indicate that the LSTM model outperforms existing models
including a reproduction of the DST, achieving a Mean Absolute
Error (MAE) of 12.05 minutes at a forecast horizon of 4 hours,
demonstrating significant improvements. This assessment under-
scores the importance of factors such as the knock-on effect in
delay prediction and suggests that integrating advanced machine
learning models can significantly enhance demand forecasting,
leading to more efficient air traffic management and reduced
delays at Schiphol Airport.

Index Terms—Air Traffic Management, Demand Forecasting,
Departure Time Prediction, Long-Short-Term Memory Neural
Network (LSTM)

I. INTRODUCTION

With the steady increase in global air travel, Air Naviga-
tion Service Providers (ANSPs) faces the dual challenges of
managing the growing complexity of airspace while maintain-
ing safety and efficiency. Despite not yet returning to pre-
COVID traffic levels, the demand for air travel is steadily
rising, with 2023 seeing a significant recovery compared to
2022 (EUROCONTROL [1]). However, this recovery has been
accompanied by an increase in delays, as only 70.6% of flights
arrived within 15 minutes of their scheduled time, and only
65.3% of flights departed within 15 minutes of scheduled
time (EUROCONTROL [1]). This alarming trend highlights
the urgency for innovative solutions to mitigate delays and
enhance the overall reliability of air traffic flow management
systems.

Central to this challenge is balancing the demand for
airspace with its available capacity. Demand, defined as the
total number of aircraft seeking to land within a specific
timeframe, must be continuously assessed against capacity,

which is dynamically influenced by factors such as weather
conditions, runway configurations, and staffing shortages. To
manage overloads, ANSPs can increase capacity—for ex-
ample, by opening additional runways—or reduce demand
by delaying arrivals. In the case of Schiphol, the optimal
timeframe to issue such regulations is 3-4 hours before take-
off, as sufficient flights are still in the pre-departure phase.
However, this differs per use case, depending on airport size
and geographical location. Extensive studies have focused
on forecasting demand by predicting individual departures
and arrivals. Accurate forecasting is essential for adaptabil-
ity, enabling ANSPs to implement actions such as real-time
data monitoring, predictive analytics, and integrated decision
support systems. Additionally, enhancing communication and
collaboration with stakeholders, adopting flexible operational
procedures, and investing in advanced technologies like ma-
chine learning and automation are crucial. These measures
empower ANSPs to make informed, real-time decisions that
optimize airspace management, reduce delays, and improve
overall efficiency.

The effectiveness of decision-support tools like the Decision
Support Tool (DST) is intrinsically linked to the accuracy
and quality of their input data. Precise forecasting of traffic
load and demand is essential to align operations with capacity
constraints—the maximum number of aircraft that can safely
occupy the airspace and runways. Inaccurate predictions can
lead to suboptimal decisions, causing unnecessary delays
and safety risks. Therefore, enhancing demand forecasting
accuracy is paramount for the DST to function effectively
and for Air Traffic Controllers (ATCos) to manage air traffic
efficiently.

To address these challenges, Luchtverkeersleiding Neder-
land (LVNL) has introduced a DST designed to enhance its
demand capacity balancing processes. By leveraging real-time
data, advanced analytics, and machine learning algorithms, the
DST provides air traffic controllers with actionable insights to
better predict and manage traffic flows. However, the accuracy
of the demand prediction by the DST has proven to be limited.
According to Vos [2] this is largely due to the uncertainty
in departure time prediction. Therefore, the objective of the
model developed in this study is to improve the Actual Take
Off Time (ATOT) prediction for all flights inbound Schiphol
that depart within Europe from the 50 out-stations with most
flight inbound Schiphol.



This paper is organized as follows. Section II reviews
related studies, focussing on demand prediction and various
flight prediction methodologies. Section III presents the case
study of Schiphol Airport, detailing its operational context and
the challenges it faces in air traffic flow management. Sec-
tion IV outlines the methodology, including data preparation,
model architecture, and training procedures using machine
learning techniques, specifically Long-Short Term Memory
Cell (LSTM) networks. The results are presented in Section
V, where the predictive accuracy of the developed model is
compared with baseline approaches, and the performance of
the DST is evaluated. Section VI discusses the implications
of the findings, addressing limitations and opportunities for
future research. Finally, Section VII concludes the paper by
summarizing its contributions and significance.

II. RELATED WORK

This section reviews the extensive research conducted on
demand prediction, focusing on methodologies for forecasting
departure times. It is organized into three main parts: subsec-
tion II-A discusses traditional trajectory-based and aggregate
demand prediction methods, evaluating their strengths and
limitations; subsection II-B explores conventional forecasting
techniques and the advancements introduced by machine learn-
ing algorithms. Finally, subsection II-C identifies the research
gap.

A. Demand Prediction

This subsection explores the primary methodologies em-
ployed in predicting air traffic demand, evaluates their
strengths and limitations, and examines the key factors in-
fluencing demand in air transportation.

Predicting air traffic demand involves estimating the number
and flow of aircraft within various airspace sectors over time.
These predictions are essential for ensuring safety, strate-
gic planning, and optimizing operational efficiency. Various
methodologies have been developed to forecast air traffic
demand, each with its own advantages and limitations. These
methods can be broadly categorized into trajectory-based
approaches and aggregate models. The following subsections
explore these traditional methods in detail, laying the ground-
work for understanding the advancements brought by machine
learning techniques:

1) Trajectory-based Demand Prediction: Traditionally, de-
mand forecasting in Air Traffic Management (ATM) has relied
on trajectory-based methods, which predict aircraft positions
along planned flight paths. These methods utilize Four Dimen-
sional (4D) trajectories, latitude, longitude, altitude, and time
for each aircraft to predict sector occupancy as reported by
de Leege et al. [3]. The process involves two critical stages:

1) Pre-Departure Prediction: Before departure, models
estimate departure times and predict flight trajectories
using historical data and statistical techniques. This
stage incorporates variables such as scheduled departure
times, historical flight durations, traffic flow patterns,

and weather conditions to estimate when and where an
aircraft will be during its flight (Ye et al. [4]).

2) Post-Departure Updates: Once airborne, real-time
radar data refines trajectory predictions, ensuring align-
ment with actual flight paths and enhancing forecast
reliability (Wu and Pan [5]).

While trajectory-based methods provide detailed and accu-
rate short-term predictions, they face significant challenges. As
Pérez Moreno et al. [6] highlight, segmenting trajectories for
precision increases computational demands and data require-
ments. Additionally, these models struggle with unplanned
deviations, such as rerouting due to congestion or adverse
weather, which can degrade prediction accuracy (Vos [2];
SESAR Joint Undertaking [7]).

2) Aggregate Demand Prediction: To address the limita-
tions of trajectory-based approaches, researchers have devel-
oped aggregate models that simplify airspace management
by focusing on traffic flow between defined airspace blocks
rather than individual flight paths. A study by Sridhar et al.
[8] introduced an aggregate model for the U.S. National
Airspace System, partitioned into 22 airspace blocks and one
international block. The study showed that combining multiple
aggregate models with hypothesis testing improved demand
forecasting accuracy, achieving root-mean-square errors be-
tween 1.79 and 2.64 aircraft.

Aggregate models offer computational efficiency and scal-
ability, making them suitable for large-scale demand forecast-
ing. However, they lack the granularity of trajectory-based
methods, potentially overlooking individual flight behaviors
and dynamic changes in airspace utilization (Delahaye et al.
[9]; Bubalo and Daduna [10]). Additionally, their predictive
accuracy diminishes over longer forecasting horizons due to
the static nature of the transition matrices and their inability
to account for real-time disruptions (Könnemann [11]).

To overcome the limitations of traditional demand predic-
tion methods, researchers like Vos [2] and Li et al. [12]
have turned to machine learning techniques. These advanced
computational methods offer the ability to handle complex,
non-linear relationships and adapt to real-time changes, ad-
dressing the challenges of scalability, computational demands,
and prediction accuracy inherent in traditional models.

B. Forecasting methods

Traditional methods, such as stochastic modelling and Pois-
son distributions, have been foundational in predicting flight
delays and demand. However, they often overlook the complex
dependencies and variables influencing airport operations [13,
14]. Time series methods, like the Clustered Airport Modeling
(CAM), incorporate network-based information of airports to
enhance prediction accuracy by leveraging structural features
and clustering airports with similar delay patterns [15].

Advancements in computational technologies and the need
for real-time responsiveness have driven a shift toward more
adaptable and sophisticated forecasting methods. Machine
learning techniques have emerged as essential tools for pre-
dicting and managing the complex, multi-faceted nature of
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air traffic. They excel at modelling non-linear relationships
and processing large datasets from diverse sources—such
as weather conditions, flight schedules, and air traffic flow
patterns—to enhance prediction accuracy and reliability.

Within the field of machine learning, supervised learning
stands out as particularly well-suited to these applications.
Supervised learning leverages historical data labelled with
actual outcomes—such as recorded departure times or airspace
demand metrics—to train models. By learning the mapping
between inputs and known outputs, supervised learning al-
gorithms develop predictive capabilities that can be applied
to new, unseen data. This approach not only captures the
inherent complexities of air traffic patterns but also allows
for continuous improvement as new data becomes available,
making it a robust and scalable solution for dynamic air traffic
management challenges.

1) Supervised Learning in Demand Prediction: Super-
vised learning techniques, including Random Forest (RF),
Graph Neural Network (GNN), Convolutional Neural Net-
work (CNN) and Recurrent Neural Network (RNN), LSTM
networks have been applied to predict various outcomes.
These outcomes include individual and aggregate arrival and
departure delays, as well as airspace complexity.

• Random Forest (RF): An ensemble supervised learning
technique suitable for handling complex, non-linear inter-
dependencies. Guo et al. [16] proposed a hybrid method
leveraging Random Forest Regression and a Maximal
Information Coefficient to effectively predict flight de-
parture delays, outperforming conventional models.

• Graph Neural Network (GNN): Extend neural networks
to data represented as graphs, capturing dependencies in
both feature space and data structure. Guo et al. [17] de-
veloped a Spatio-temporal Graph Dual-Attention Neural
Network to predict departure delays at long horizons.

• Convolutional Neural Network (CNN): Effective in
processing data with grid-like topology, capturing com-
plex structures and patterns. Qu et al. [18] presented
methods using CNN models to predict flight delays by
integrating flight data and meteorological information.

• Recurrent Neural Network (RNN): Designed to rec-
ognize patterns in sequences of data, making them ideal
for tasks where the order of events is important. Li et al.
[12] introduces a two-stage CNN-LSTM-Random Forest
model integrating spatial and temporal data for flight
delay predictions. Sun et al. [19] employed an LSTM
model to predict arrival and departure delays using the
EUROCONTROL R&D dataset, achieving high precision
in their predictions. Finally, Wang et al. [20] developed a
convolutional LSTM with a multi-head attention mecha-
nism for predicting civil traffic flow, which outperformed
several other models. Their multi-head attention LSTM
framework has served as a foundation for this research.

Finally, in research with similar data available and with
an emphasis on the knock-on effect, Ramon Dalmau [21]
estimated Estimated Time of Arrival (ETA) for flights crossing

the MUAC area with a 30% accuracy increase compared to
baseline predictions.

In summary, supervised learning techniques provide signifi-
cant advancements in predicting flight delays and air traffic
outcomes. Ensemble methods, like RF excel at capturing
non-linear relationships, while GNN effectively model spatial
dependencies in networked data. CNN are well-suited for
identifying patterns in grid-like data, and RNN, particularly
LSTM-based models, leverage temporal dependencies for se-
quential predictions. Hybrid approaches, such as CNN-LSTM
and attention-based frameworks, combine spatial and temporal
features for improved accuracy. These methods complement
each other, with the choice depending on data structure and
prediction needs, enabling more precise forecasts and better
operational efficiency in air traffic management.

C. Research Gap

Despite the advancements in predictive modelling tech-
niques, several gaps remain in the literature. Existing models
that forecast the ATOT for flights often make predictions on
shorter horizons. Traditional trajectory-based and aggregate
demand forecasting methods provide valuable insights but can-
not incorporate non-linear, dynamic interactions and long-term
temporal dependencies that significantly influence departure
delays.

Although promising, current machine learning approaches,
including ensemble models and conventional neural networks,
have shown limitations in accounting for factors such as
the knock-on effect, where delays in one flight propagate to
subsequent flights sharing the same aircraft. Additionally, the
integration of diverse and real-time as Electronic Flight Data
(EFD) messages, weather reports and filed flight data across
a larger area—has not been fully explored, leaving substantial
room for improvement.

To be noted that the DST currently employed by LVNL
relies on a Random Forest with limited predictive accuracy,
largely due to the uncertainty surrounding departure times.
Enhancing ATOT prediction models to accommodate a broader
scope of flight data, incorporating network effects as the
knock-on effect and other congestion factors, and exploit
advanced neural architectures like an LSTM network is there-
fore potentially improving. Such improvements are expected
to result in more reliable demand forecasts, enabling better
demand-capacity balancing, and leading to reduced delays and
enhanced operational efficiency at airports like Amsterdam
Schiphol.

III. CASE STUDY: SCHIPHOL AIRPORT

Amsterdam Schiphol Airport is one of Europe’s busiest
hubs, handling 441,969 flights in 2023 (Royal Schiphol Group
[22]). At such high traffic volumes, forecasting departure times
accurately is crucial to maintain efficient flow management,
avoid congestion, and minimize holding patterns. Although
LVNL has already deployed a DST to assist ATCos and Flow
Management Position Controler (FMPC) in balancing capacity

3



with predicted demand, the tool’s predictive accuracy remains
limited, especially for longer horizons.

A key focus of this forecasting challenge is the ATOT,
which has proven to be the largest uncertainty in determining
the ETA. Accurate ATOT predictions have proven to be diffi-
cult because they are dependent on operational inefficiencies
(e.g., runway capacity, gate availability, turnaround delays),
environmental conditions (e.g., weather disruptions), and sys-
temic pressures (e.g., congestion, inter-airport dependencies).
By capturing these interrelated factors, refined ATOT forecasts
can enhance both the predictability and the overall efficiency
of air traffic operations.

For Schiphol, extending the forecast horizon to four hours
is particularly valuable, as it ensures significant flights are
still in their pre-departure phase—thereby enabling proactive
measures to manage impending demand peaks. However,
forecasting at this timescale is challenging due to weather
variability, potential knock-on effects from upstream airports,
and the inherent complexity of ground operations. The Airport
Collaborative Decision Making (A-CDM) system, which coor-
dinates real-time ground-operation data among airlines, airport
authorities, and ground handlers, provides critical inputs for
improving DST accuracy. Fully leveraging these data streams,
however, calls for more advanced forecasting methods that can
accommodate Schiphol’s complex operational dynamics.

According to Dijkstra and Calis [23], the DST must deliver
precise, real-time traffic analyses, identify runway and airspace
capacity constraints, and offer features such as Air Traffic
Flow Management (ATFM) regulation, scenario comparison,
and delay balancing. Additionally, the system should generate
early overload alerts to facilitate timely interventions. Collec-
tively, these requirements aim to keep Schiphol’s operations
safe and efficient, even under fluctuating traffic demands and
evolving operational conditions. In the next chapter, the ma-
chine learning approach that integrates operational, weather,
and systemic factors to yield more accurate ATOT predictions
is described.

IV. METHODOLOGY

The methodology utilized to develop a time series predic-
tion model employs a LSTM network augmented with an
attention mechanism (LSTM-MHA). This approach includes
data preparation, the design of a neural network architec-
ture, and a training procedure aimed at improving predic-
tive performance during inference. This section provides a
comprehensive overview of the methodology employed to
develop a time series prediction model, structured as follows:
Subsection IV-A outlines the data sources used, emphasizing
their significance and preparation processes; Subsection IV-B
details the preprocessing steps, including feature engineering,
standardization, and sequence construction; Subsection IV-C
describes the architecture of the proposed LSTM-MHA model,
explaining its integration of LSTM layers and attention mech-
anisms; Subsection IV-D elaborates on the training proce-
dure, including loss functions, optimization, and evaluation

metrics; Subsection IV-E introduces the Recursive LSTM-
MHA forecaster for real-time predictions; and Subsection IV-F
compares alternative machine learning models to validate the
effectiveness of the proposed approach.

A. Data

The success of the predictive methods outlined in the
previous chapter is fundamentally dependent on the avail-
ability and quality of relevant data. Accurate forecasting
and modelling, especially for predicting flight delays, require
extensive datasets that encompass a wide range of factors,
including weather conditions, ATFM regulations, and A-CDM
data. However, accessing these diverse data sources can be
challenging due to availability constraints and real-time ac-
cessibility. This subsection discusses the data sources utilized
in this research, detailing the types of data collected and their
significance in enhancing prediction models.

A critical consideration in selecting these data sources is the
desired prediction horizon of four hours. The reliability of data
often diminishes as the time gap between the prediction and
the actual event increases. At this horizon, updates to flight
plans have proven to be insufficiently accurate. Consequently,
supplementary data sources are required to enhance the pre-
dictive capabilities of the models. While flight plan data from
other flights can provide valuable insights into factors like
knock-on delays, this research focuses on data sources that
are available in real-time to align with the operational needs
of the DST, even though the actual data used is historical.

For training, the dataset is constructed such that the first
timestep begins 5 hours before the ATOT. In real-time sce-
narios, where the ATOT is unavailable, the data points in the
testing dataset start 5 hours before the filed Estimated Take
Off Time (ETOT) and continue up to the actual ATOT. Both
datasets contain the latest update on a 5 minute resolution.

1) EFD Messages: The primary data source for this project
are EFD messages, provided by LVNL. These messages are
the primary stream of information between individual flights
and LVNL with EUROCONTROL serving as an intermediary.
The messages are sent regularly, in addition to whenever a
significant update can be given. The data extracted out of the
EFD messages can be found in Table I, and more thorough
explanation in Appendix A.

Among other features, however, not all features impact the
ATOT and thus are not used in this research.

2) Weather Data: Weather conditions significantly impact
airport capacity and flight operations. Despite inherent uncer-
tainties in weather forecasts, they are essential for making
informed decisions regarding flight scheduling and departures,
particularly within the four-hour prediction horizon. Termi-
nal Aerodrome Forecast (TAF) data, which provides routine
weather predictions at airport weather stations, is particularly
useful for forecasting and predicting the impact of weather on
departure times.

The features from TAF reports which are used are:
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TABLE I: EFD Message Fields and Data Types

Field Data Type

Timestamp Datetime

Flightstate Categorical

Flightplan ID Identifier

Aircraft ID Identifier

Aircraft Type Categorical

EOBT Datetime

TSAT Datetime

TOBT Datetime

CTOT Datetime

ETA Datetime

ADEP Categorical (Airport Code)

ADES Categorical (Airport Code)

Flightplan Text/String

Message Type Categorical

• Wind: Speed, direction, and gusts, which are crucial
for runway utilization and influence takeoff and landing
operations.

• Visibility: Low visibility can trigger air traffic flow re-
strictions, potentially causing delays. Maximum visibility
is 10km or CAVOK.

More features could be extracted, however, for this research,
these were selected as the most crucial as the focus is on
developing a model that works on days without significant
weather. Predictions for weather conditions are available up
to 18 hours in advance, which is within the scope of the 4-
hour horizon desired for this research. TAF data thus provides
critical insight into the weather conditions that could affect
airport operations and flight schedules. The TAF data was
extracted from Ogimet [24].

3) EUROCONTROL DDR dataset: The EUROCONTROL
Demand and Capacity Data Reporting (DDR) dataset provides
crucial insights into air traffic flow across Europe, with a
specific focus on filed flight plans submitted by airlines.
This dataset is instrumental in understanding how air traffic
demand interacts with available capacity in European airspace,
particularly for forecasting delays and optimizing traffic man-
agement. The primary component of the DDR data used in this
research are the Filed Flight Messages. These messages con-
tain essential information about flight plans filed by airlines,
which include details such as the aircraft ID, departure and
destination airports, flight routing, and the planned departure
and arrival times. They are continuously updated and provide
real-time flight information that can be used to track the
progress of individual flights. Filed flight messages allow for
the analysis of flow disruptions, as delays or routing changes
can be traced, and their effects on airport and airspace capacity
can be assessed.

B. Data Preparation

The dataset consists of both fixed and time-varying features.
Fixed features represent the filed flight data from both the EFD
and DDR and weather data, whereas time-varying features
capture the updates which are given within the window.
The set of fixed features is denoted as Xfixed ∈ RN×F ,
where N represents the number of samples and F the number
of fixed features. Time-varying features are represented as
Xtime ∈ RN×T×V , with T indicating the number of time steps
and V the number of time-varying features. The preparation
process involves several key steps:

1) Knock on Effect: The knock-on effect arises when delays
propagate from one flight to subsequent flights sharing the
same aircraft. The knock-on delay is calculated by considering
the dependencies between successive flights. The method
relies on both historical and real-time data to estimate the
readiness of the aircraft for its next departure.

The process is started by firstly retrieving the most recent
Actual Arrival Time (ATA) or ETA of the preceding flight. If
no arrival information is available, an estimated arrival time is
calculated using filed schedule data, such as the Estimated Off-
Block Time (EOBT) and typical flight durations. The expected
ready time for the aircraft is then computed by adding the
minimum turnaround time to the arrival time. This turnaround
time varies per aircraft type and accounts for activities such
as passenger deboarding, refuelling, and cleaning.

The knock-on delay is determined by comparing the com-
puted ready time of the aircraft to the scheduled departure
time of the subsequent flight. If the ready time exceeds the
scheduled departure time, the difference represents the knock-
on delay. This value is constrained to be non-negative, as early
readiness does not contribute to delays. Mathematically, the
knock-on delay δ for flight n is computed as:

δn = max(0, tready,n − tdeparture,n) (1)

where tready represents the computed aircraft ready time, and
tdeparture is the scheduled departure time of the current flight.

2) Feature Preparation: Several features receive special
attention due to their inherent meaning. Time of day-related
features are transformed into circular representations to more
accurately capture the cyclical nature of time—for example,
representing the time difference between 23:00 and 01:00 as
two hours. Categorical features, such as departure airport and
day of the week, as well as string-based features like model
type, flight state, and flight offblock status, are encoded using
dummy variables. This encoding, as shown in equations (2)
and (3), facilitates the model’s ability to interpret and leverage
these cyclical inputs effectively.

Timesin = sin

(
2π

Time
T

)
(2)

Timecos = cos

(
2π

Time
T

)
(3)
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3) Standardization: To ensure numerical stability and im-
prove convergence during training, the features are standard-
ized using the a standard scaler. This transformation is applied
separately to each of the fixed features and each of the time-
varying features. Because of the recursive approach which will
be explained later in this section, it is important that features
are scaled irrespective of their timestep.

a) Fixed Features.: For the fixed features Xfixed, the
standardization is performed independently for each feature
across all samples. That is, for feature j:

X′
fixed[i, j] =

Xfixed[i, j]− µfixed,j

σfixed,j
, (4)

where µfixed,j and σfixed,j are the mean and standard deviation
of feature j across all samples.

b) Time-varying Features.: For the time-varying features
Xtime, the standardization is performed independently for each
base feature across all timesteps and samples. Specifically, for
feature j:

X′
time[i, t, j] =

Xtime[i, t, j]− µtime,j

σtime,j
(5)

where µtime,j and σtime,j are the mean and standard deviation
of feature j, aggregated over all timesteps and samples.

c) Binary Features.: Binary features are excluded from
standardization because scaling them can distort their categor-
ical nature, leading to unintended interpretations by the model.

This preprocessing ensures that both fixed and time-varying
features contribute comparably to the model, avoiding domi-
nance by features with larger magnitudes or higher variance.

4) Sequence Construction: Time-varying features are re-
shaped to form sequences suitable for input into the LSTM:

Xseq = [X′
fixed,X

′
time] (6)

where Xseq ∈ RN×T×(F+V ) represents the combined fea-
ture set repeated across all time steps.

5) Target Variable Scaling: To improve convergence and
the stability of the training process the target variable y ∈ RN

is also standardized:

y′n =
yn − µy

σy
(7)

After compiling all the relevant features, Figure 1 presents
a correlation heatmap of the numerical variables at both the
initial and latest timesteps.

C. LSTM-MHA Architecture

The model architecture integrates a stacked LSTM network
with a Multi-Head Attention mechanism (LSTM-MHA) to ef-
fectively capture both local and global temporal dependencies
while enhancing feature weighting. As visualized in Figure 2,
the input sequence is first processed through multiple LSTM
layers, extracting sequential patterns and retaining long-term
memory. The output is then passed to the Multi-Head Attention
mechanism, where attention heads compute content-based and
relative positional scores to dynamically focus on the most

relevant timesteps. The aggregated outputs from the attention
heads are transformed by a Dense layer and regularized with a
Dropout layer to prevent overfitting. Finally, the model’s out-
put layer generates predictions, ensuring accurate time series
forecasting by combining temporal dependencies and dynamic
feature weighting. While this architecture provides robust
interpretability and scalability, it is computationally intensive
and memory-demanding, which may limit its applicability in
real-time or resource-constrained environments.

1) LSTM Architecture: The core part of the LSTM-MHA
is the LSTM cells. A schematic of an LSTM cell can be found
in Figure 3, showcasing the multiple gates:

• Forget Gate (FG): This gate decides what information
from the cell state should be discarded or retained. It uses
the current input and the output from the previous step
to generate values between 0 and 1 through a sigmoid
layer, with 0 indicating that the information should be
forgotten, and 1 indicating that it should be retained and
used to modify the hidden state.

• Input Gate (IG): Similar to the forget gate, the input gate
decides which of the current input information should be
used to update the cell state. It determines the relevance
of the input information in the context of the new cell
state.

• Cell-State Gate (CG): This gate calculates the candidate
values for the new cell state by considering the previous
output and the current input. It uses a hyperbolic tangent
activation function, which outputs values in the range of
-1 to 1, to generate these candidate values. The new cell
state is then determined by combining the outputs of the
forget gate, input gate, and the cell-state gate.

• Output Gate (OG): The output gate decides what the next
output should be based on the cell state and the current
input. This gate determines the next cell output, which is
modified according to the cell state to produce the final
output.

The LSTM network processes input sequences to model
temporal dependencies. For each time step t, the LSTM
computes:

it = σ (Wixt +Uiht−1 + bi) (8)
ft = σ (Wfxt +Ufht−1 + bf ) (9)
ot = σ (Woxt +Uoht−1 + bo) (10)
c̃t = tanh (Wcxt +Ucht−1 + bc) (11)
ct = ft ⊙ ct−1 + it ⊙ c̃t (12)
ht = ot ⊙ tanh (ct) (13)

In these equations, xt represents the input at time t, ht the
hidden state, ct the cell state, σ(·) the sigmoid activation func-
tion, and ⊙ denotes element-wise multiplication. ht represents
the prediction for timestep t. The weight matrices W and U,
along with biases b, are learnable parameters.

2) Multi-Head Attention Mechanism: To enhance the
model’s ability to focus on relevant features, a multi-head
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Fig. 1: Correlation heatmap for all numerical features for the first and latest timestep. Highlighted value is the departure delay.

Fig. 2: Schematic of the LSTM-MHA

attention mechanism with relative positional encoding is em-
ployed. This mechanism allows the model to focus on different
parts of the input sequence, capturing various dependencies
and patterns. By computing attention scores, the model can
assess the importance of each time step in the sequence when
making predictions.

a) Scaled Dot-Product Attention: For each head, atten-
tion weights are computed using queries Q, keys K, and
values V derived from the LSTM outputs:

Q = HWQ (14)
K = HWK (15)
V = HWV (16)

where H ∈ RT×H is the hidden state sequence, and WQ,
WK , WV are projection matrices.

Fig. 3: Schematic of the Long Short-Term Memory Cell [25]

Attention scores are calculated as:

Attention(Q,K,V) = softmax
(
QK⊤
√
dk

+R

)
V (17)

where dk is the dimensionality of the keys, and R represents
the relative positional encoding.

b) Relative Positional Encoding: Relative positions be-
tween time steps are encoded using an embedding matrix:

Ri,j = Epos(i− j +∆) (18)

where ∆ is a constant to shift the indices into a valid range,
and Epos is the positional embedding matrix.
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c) Multi-Head Attention: Multiple attention heads cap-
ture information from different representation subspaces. The
outputs from each head are concatenated along the feature
dimension and then projected to the desired dimensionality:

MH(Q,K,V) = [head1;head2; . . . ;headh]WO, (19)
headi = Attention(Qi,Ki,Vi). (20)

Here, WO ∈ R(h·dk)×dmodel is the output projection matrix,
and h is the number of attention heads.

3) Output Layer: Outputs from the attention mechanism
are passed through a fully connected layer to produce final
predictions:

ŷt = WFCzt + bFC, (21)

where zt is the attention output at time t, and WFC, bFC
are learnable parameters.

D. Training Procedure

1) Loss Function: The model is trained to minimize a com-
posite loss function combining Mean Squared Error (MSE)
and Mean Average Error (MAE)

L = λMSE · MSE + λMAE · MAE (22)

where:

MSE =
1

NT

N∑

n=1

T∑

t=1

(ŷn,t − yn,t)
2 (23)

MAE =
1

NT

N∑

n=1

T∑

t=1

|ŷn,t − yn,t| (24)

The weights λMSE and λMAE control the contribution of each
loss component, both taken as 0.5.

2) Optimization: The Adam optimizer is employed with a
learning rate η and weight decay β for L2 regularization:

θ(k+1) = θ(k) − η
(
∇θL+ βθ(k)

)
, (25)

where θ represents the model parameters.
3) Early Stopping: To prevent overfitting, early stopping is

applied based on validation loss with a patience parameter p:

Stop training if L(k)
val > L(k−p)

val − δ, (26)

where δ is a minimal improvement threshold.
4) Data Augmentation with Sequence Shifting: To enhance

robustness, training data is augmented by shifting sequences
forwards and backwards in time. For a shift value s, input and
target sequences are adjusted:

Xshifted(t) = X(t+ s), (27)
yshifted(t) = y(t+ s). (28)

Padding is applied by repeating boundary values where
necessary.

E. Recursive LSTM-MHA Based Forecaster

The Recursive LSTM-MHA Based Forecaster is a pivotal
component of the predictive modelling framework, designed to
iteratively generate forecasts by leveraging the LSTM-MHA’s
power. It is the last step to a fully functional model that can
work in real-time. This subsection describes the operational
mechanics of the Rolling Forecaster, integrating seamlessly
with the previously established data preparation and LSTM
architecture. The Recursive Forecaster methodology integrates
the LSTM-MHA architecture with an iterative forecasting
strategy to effectively model and predict time series data.
The approach captures complex temporal dependencies and
dynamically updates predictions, ensuring robust performance
across varying forecast horizons.

1) Mathematical Framework: Taking a time series dataset
comprising N samples as input, each consisting of a set of
fixed features and time-varying features across T timesteps.
The Recursive Forecaster aims to predict future values of the
target variable by iteratively updating its input window with
newly forecasted values.

a) Notation and Definitions:

• Let X ∈ RN×T×F denote the input feature tensor, where
F represents the total number of features. The dataset
used contains data ranging from 300 minutes before filed
takeoff, untill actual takeoff with ∆t = 5. This implies a
variable time-series length per flight.

• y ∈ RN is the target variable matrix, where each entry
yn corresponds to the delay of flight n.

• The window size is fixed at W = 61, or 300 minutes.
• The prediction horizon is denoted by H , indicating the

number of future steps ahead to forecast.
• tstart indicates the time 300 minutes before the predicted

takeoff time, indicating the start of the forecasting win-
dow.

b) Forecasting Mechanism: The Recursive Forecaster
operates through a recursive prediction strategy, encapsulated
in the following mathematical formulation:

1) Initialization: For each sample n, initialize the input
window with the first W timesteps because no informa-
tion is available apart from the first timestep:

W(0)
n = {Xn,0,Xn,0, . . . ,Xn,0} (29)

2) Iterative Prediction: For each forecast step h =
1, 2, . . . ,H , perform the following:

a) Model Input: Input the current window W(h)
n into

the trained LSTM-MHA network to obtain the
prediction:

ŷn,W+h = f(W(h)
n ;θ) (30)

where f represents the predictive function param-
eterized by weights θ.

b) Select the value at forecast horizon H from the
output of length W .
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c) Window Update: Incorporate the newly predicted
yn to derive tstart and create a new input window.

W(h+1)
n = {Xn,tstart

,Xn,tstart+1, . . . ,Xn,tstart+W } (31)

Whenever data for a timestep t is unavailable,
the input window is padded by repeating the last
known feature vector until the window length
reaches W .

3) Recursive Forecasting: Repeat the iterative prediction
and window update steps until the flight has departed,
which the model detects by the absence of data.

The forecasting mechanism is also given in the following
pseudo-code:

Algorithm 1 Recursive LSTM-MHA Based Forecaster

1: for each sample n do
2: Initialize:
3: Set input window W(0)

n = {Xn,0, . . . ,Xn,0} (repeated
W times)

4: Set predicted takeoff time tpred = 300
5: Initialize time indices tstart = tdata = tmodel = 0
6: while data is available do
7: Update Features:
8: Determine input window W(h)

n based on indices from
tstart to tdata, limited to length W

9: Apply padding if necessary to maintain consistent
input length

10: Predict Next Value:
11: Compute ŷn = f(W(h)

n ;θ)
12: Inverse transform ŷn to original scale
13: Update Indices and Times:
14: Update predicted takeoff time tpred using ŷn
15: Adjust tstart, tcurrent, tdata, and tmodel based on new

predictions
16: end while
17: end for

2) Performance Evaluation: The performance of the Recur-
sive Forecaster is assessed using standard evaluation metrics,
including Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and R-squared (R2) scores. These metrics are
computed both overall and on a per-timestep basis to provide
granular insights into the model’s predictive performance
across different forecast horizons.

a) Error Analysis: To understand the distribution and
propagation of prediction errors, the following analyses are
conducted:

• Overall Error Metrics: Compute aggregated MAE,
RMSE, and R2 across all samples and timesteps.

• Per-Timestep Metrics: Calculate MAE, RMSE, and R2

for each forecast horizon to identify patterns or inconsis-
tencies in prediction accuracy over time.

• Residual Analysis: Analyze residuals to detect any sys-
tematic biases or anomalies in the forecasting process.

F. Comparison Models
To ensure the selection of the most suitable model, several

state-of-the-art machine learning techniques were implemented
and compared. These include ensemble methods such as RF,
LightGBM, and CatBoost, which are widely used in literature
but tailored to this specific application. Additionally, the Trans-
former model was evaluated for its extensive application in
machine learning tasks and its inherent attention mechanism,
which facilitates the modelling of complex dependencies.

1) Random Forest (RF): A RF model was implemented to
assess the impact of the additional input features on predictive
performance. RF is an ensemble method that constructs mul-
tiple decision trees using random subsets of features and data,
combining their predictions to enhance robustness and mitigate
overfitting. In this study, features were standardized and aggre-
gated using statistical measures such as mean, maximum, and
variance within each time-series window. Hyperparameters,
including the number of trees and maximum depth, were fine-
tuned using grid search and cross-validation.

2) LightGBM: LightGBM, a gradient-boosting framework,
was utilized to evaluate the effectiveness of boosting methods
in this context. Known for its speed and efficiency, LightGBM
employs histogram-based feature binning. Features were pro-
cessed similarly to RF, with categorical data label-encoded
and time-varying features aggregated statistically. Key hyper-
parameters, including the number of leaves and the learning
rate, were optimized through cross-validation to minimize the
MSE.

3) CatBoost: CatBoost, another gradient-boosting algo-
rithm, was chosen for its ability to natively handle categorical
features without extensive preprocessing. This model was
included to evaluate the benefits of this capability. Similar
to LightGBM, time-varying features were aggregated using
statistical measures. Hyperparameter tuning focused on pa-
rameters such as tree depth and the number of iterations,
employing ordered boosting to improve accuracy and reduce
overfitting.

4) Transformer: The Transformer model, leverages self-
attention mechanisms to capture long-range dependencies in
sequential data. The architecture comprises multiple encoder
layers which allow the model to focus on different parts of
the input sequence simultaneously, enhancing its ability to
understand complex temporal patterns. The Transformer model
processes the input data by first projecting it into a higher-
dimensional space through a linear layer, applying positional
encoding, and then passing it through the stacked Transformer
encoder layers. The output from the final encoder layer is then
projected back to the desired output dimension through another
linear layer. The Transformer shares similarities with the
LSTM in processing sequential data. However, while LSTM
relies on recurrent connections to capture dependencies, the
Transformer employs self-attention mechanisms to model re-
lationships within the data, eliminating the need for traditional
attention mechanisms.

5) LSTM: To evaluate the contribution of the Multihead
Attention Mechanism, an LSTM model without an attention

9



mechanism was included in the range of models for compar-
ison.

To evaluate the models’ performance during inference,
algorithms were developed that allow for each model to predict
in real-time. The ensemble methods, RF, LightGBM and
CatBoost, which utilize a separate model for each timestep,
largely follow a similar structure, where the subsequently used
model is selected by the previous output. In contrast, the
Transformer-based recursive forecaster has larger similarities
to the Recursive LSTM-MHA based Forecaster, both in lever-
aging sequential dependencies and in their ability to maintain
context over multiple timesteps.

V. RESULTS

After experimenting with multiple models, this section
presents the performance of the proposed LSTM-MHA archi-
tecture and compares it to other approaches and the existing
DST. Subsection V-A describes the experimental setup, and
Subsection V-B outlines the training process. Subsection V-C
provides a direct comparison of models, while Subsection V-D
measures performance against the baseline. Feature impor-
tance is discussed in Subsection V-E, and Subsection V-F
explores results under different operational conditions. Finally,
Subsection V-G examines how improved forecasts can enhance
demand prediction.

A. Experimental Setup

A comparative analysis against the existing DST model
was conducted to evaluate the performance of the proposed
LSTM-MHA model and assess its suitability for operational
deployment. The model was trained on data from March
24th, 2023, to August 31st, 2023, and evaluated on data
spanning September 1st to October 28th, 2023. During this
two-month evaluation period, a total of 14,142 flights were
inbound to Schiphol Airport from European airports, providing
a substantial dataset for analysis.

For the models discussed in previous sections, the primary
metric of interest is the MAE with respect to the ATOT.
However, from the perspective of LVNL, the most valuable
metric is the MAE with respect to the time until the aircraft
reaches Dutch airspace, referred to as the Cross Border Areas
(CBAS) entry time.

Therefore, the selected LSTM-MHA model was compared
to the flight plans, current DST model, and the RF with the
same dataset. This comparison will highlight the potential im-
provements in prediction accuracy and operational efficiency
that the LSTM-MHA model could offer over the existing
model.

B. Training Process and Results

The training dataset was sorted on ETOT and split into
training and validation sets, using an 80-20 split, to monitor
the model’s performance and prevent overfitting. The LSTM-
MHA model was trained over multiple epochs, with each
epoch representing a complete pass over the entire training
dataset. The number of epochs was determined based on the

model’s convergence behaviour, monitored through the loss
function.

Hyperparameter tuning was conducted to optimize the
model’s performance. Key hyperparameters adjusted included
the number of LSTM layers, the hidden layer size, the learning
rate, and batch size. The final model configuration was selected
based on the best performance on the validation set. Table II
lists the resulting parameters, which align with configurations
found in the literature but introduce a relatively high level of
complexity.

TABLE II: Selected parameters for the LSTM

Parameter Value(s)

Hidden Layer Size 110

Number of Layers 5

Learning Rate 0.00005

Number of Epochs 20

Dropout Rate 0.3

L1 Penalty 0

L2 Penalty 0

Maximum Shift 5

Number of Attention Heads 4

C. Model Comparison

In order to thoroughly assess the performance of the LSTM-
MHA model, it is crucial to compare it against other estab-
lished models trained and evaluated on the same dataset. This
comparative analysis ensures a fair assessment and highlights
the relative strengths and weaknesses of each modelling ap-
proach. The models considered in this comparison include
traditional ensemble methods: RF, LightGBM, and CatBoost,
as well as neural network architectures like the Transformer
and a LSTM without an attention mechanism.

Given the diverse architectures, learning methods, and train-
ing strategies of these models, a direct comparison of their
computational characteristics and predictive performances can
be challenging. The dataset, structured as a time series, nat-
urally suits models like the Transformer and LSTM-based
approaches. Ensemble models, by contrast, contain a separate
model for each forecast horizon, a strategy that may lead
to different resource requirements and error propagation over
multiple timesteps. To ensure a balanced evaluation, this
section examines several key factors: training speed, model
complexity, total model size, simulation run time, and predic-
tive accuracy.

Table III highlights each model’s computational attributes,
including training time, parameter counts, model size, and
simulation runtime. All models were trained on the same
NVIDIA 4090 GPU for a consistent performance baseline. The
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RF model, with a training time of 85 minutes and 1.28×1010

parameters, stands out for its substantial computational foot-
print, ultimately producing a 14 GB model. This high resource
demand can be attributed to its ensemble design, which
aggregates numerous decision trees for improved predictive
accuracy.

By contrast, gradient boosting methods such as Light-
GBM and CatBoost are considerably more resource-efficient.
With training times of 36 and 31 minutes, respectively, and
significantly fewer parameters, these models produce much
more compact model files while maintaining competitive per-
formance. Their leaner architectures thus offer a favourable
compromise between accuracy and computational overhead.

The Transformer model stands out with the shortest training
time (6 minutes) and the smallest size (4.1 KB), attributable to
its efficient attention-based architecture. The standard LSTM
model, while moderate in training time (17 minutes) and
size (41.1 KB), has a relatively long simulation run time
(97 minutes), reflecting the recurrent step-by-step processing
of sequential data. Introducing multi-head attention to the
LSTM resulting in the LSTM-MHA, increases both training
time (20 minutes) and simulation run time (115 minutes),
demonstrating that enhanced representational capacity comes
at a computational cost.

These computational findings highlight the trade-offs
inherent in model selection. While Transformer-based models
and gradient boosting methods are computationally more
efficient, LSTM-based models, particularly with multi-head
attention, may yield better predictive accuracy at the expense
of longer run times.

TABLE III: Training and Model Information for Various Models

Model Training
Time
(min)

Trainable
Parameters

Model
Size

Simulation
Run Time

(min)

Random Forest 85 1.28× 1010 14 GB 51

LightGBM 36 9.3× 105 84 MB 6

CatBoost 31 1.8× 107 306 MB 12

Transformer 6 4.07× 105 4.1 KB 20

LSTM 17 5.04× 105 41.1 KB 97

LSTM-MHA 20 5.76× 105 41.4 KB 115

In addition to computational factors, predictive performance
remains a critical focus. Table IV compares the models based
on average MAE, Root-Mean Square Error (RMSE), R2, and
the Standard Deviation (STD) of their errors. Figure 4 visual-
izes the evolution of MAE across forecasting horizons for all
flights within the testing period. The ensemble methods—RF,
LightGBM, and CatBoost—show similar performance trends,
with limited improvement as the forecast horizon progresses,
except for a slight enhancement in the final 100 minutes.
While the Transformer model outperforms these ensemble
methods, its accuracy is ultimately surpassed by the LSTM-

based models. The incorporation of the MHA mechanism
further enhances the predictive performance of the LSTM
model, albeit with marginal gains. Figure 5, depicting the
error distribution for the critical 4-hour horizon, highlights the
tighter error margins achieved by the LSTM-MHA model. A
key insight from Figure 4 is the tipping point observed at
140 minutes before the ATOT, driven by the introduction of
A-CDM updates, such as slot issuance. The LSTM architec-
tures excel at leveraging earlier data to handle this transition
effectively, whereas other models struggle to adapt to these
updates.

Fig. 4: Mean Absolute Error (MAE) comparison of models.

Fig. 5: Distribution of errors for ATOT prediction at a horizon
of 4 hours.

Table IV presents the predictive metrics, offering a di-
rect comparison of accuracy, error magnitude, and variabil-
ity. The ensemble methods (RF, LightGBM, and CatBoost)
cluster around a 10-minute average MAE and average R2

values near 0.58–0.60, reflecting their similar architectures
and timestep-by-timestep forecasting approach. Such methods,
while straightforward, can suffer from error accumulation
over multiple horizons. Neural network-based models, on
the other hand, exhibit better performance. The Transformer
reduces the average MAE to 9.62 minutes and achieves an
average R2 of 0.66. The LSTM model further improves to an
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average MAE of 7.65 minutes and R2 of 0.68. The LSTM-
MHA model attains an average MAE of 7.57 minutes and
maintains an average R2 of 0.69, indicating that attention-
enhanced recurrent architectures effectively capture long-term
dependencies and reduce prediction variability. Overall, the
LSTM architecture proves to be the most accurate, and the
MHA mechanism marginally improves performance.

TABLE IV: Average Simulation Results of Various Models for
a 5-hour window

Model Average
MAE

Average
RMSE

Average
R2

Average
STD

Random Forest 10.41 15.36 0.58 11.29

LightGBM 10.22 15.02 0.60 11.01

CatBoost 10.33 15.27 0.59 11.26

Transformer 9.62 13.97 0.66 10.12

LSTM 7.65 10.66 0.68 7.26

LSTM-MHA 7.57 10.43 0.69 7.17

D. Comparison with Baseline

When comparing the best-performing model, the LSTM-
MHA, to the current DST’s RF, the RF with similar data and
the flight plan updates, the first notable difference is, at longer
horizons both the RF and LSTM-MHA achieve lower MAE,
implying successful knock-on effect implementation. More-
over, it becomes evident that the LSTM-MHA more effectively
captures the underlying trends and temporal dynamics present
in the flight delay data. Figure 6 illustrates the differences in
MAE relative to the time until CBAS entry, providing a visual
comparison of the models’ predictive accuracies. The time till
CBAS entry represents the time till the aircraft reaches the
Dutch airspace, which is a more important indicator for the
demand at Schiphol than the ATOT.

Fig. 6: MAE Comparison between LSTM-MHA, Flight Plan,
DST and RF

The LSTM-MHA improves the critical 4-hour horizon MAE
from approximately 13.8 minutes to 9.9 minutes, representing

a roughly 28% improvement. Although the numerical data is
not available, this visual comparison underscores the LSTM-
MHA’s superior performance compared to both the DST model
and the RF with similar data.

Figure 7 further compares the mean prediction error and
standard deviation between the LSTM-MHA and DST models.
The LSTM-MHA demonstrates not only a lower standard
deviation but also a more consistent mean error trajectory over
time.

Fig. 7: Standard Deviation Comparison between LSTM-MHA
and DST

E. Feature Importance Analysis

To understand the factors influencing the LSTM-MHA’s
performance, a feature importance analysis was conducted by
permuting individual features and observing changes in MAE.
Figure 8 shows the top six features impacting predictions. The
numerical values for all features can be found in Appendix A

Flight Plan Delay is highly influential throughout the pre-
diction window, peaking at 80% importance, increases as
ATOT approaches, emphasizing the growing accuracy of the
flight plan updates. Knock-On Delay starts with a strong influ-
ence but diminishes over time, suggesting that other features
like Flight Plan Delay capture its effects. Binary feature Flight
State SI (Slot Issued) which indicates whether a departure
slot has been issued, becomes critical halfway through the
prediction window, gaining around 150–200 minutes before
ATOT. This aligns with the slot issuance window of 180 min-
utes. TSAT Delay and TOBT Delay remain consistently low,
providing supplementary information, while binary feature
Model Type ACT gains importance in the final 100 minutes,
implying that actual updates are most meaningful in this stage.

The evolving feature importance underscores the need for
dynamic modelling approaches to adjust feature weights over
time. Early reliance on historical data and a shift toward real-
time factors enhance prediction accuracy. These findings sug-
gest operational practices should focus on addressing knock-on
delays early and keep on improving on the flight plan updates.
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Fig. 8: Relative importance of top features over time.

F. Performance Analysis by Dimension

This section examines the predictive performance of the
LSTM-MHA across various dimensions, including departure
hour, day of the week, departure airport, and aircraft type.
By exploring how the MAE changes under different grouping
criteria, patterns and opportunities can be identified.

First, Figure 9 highlights the relationship between flight
departure time (grouped by ETOT) and MAE. While differ-
ences are relatively small, a pattern emerges: early-morning
and late-evening flights generally yield lower prediction er-
rors, whereas midday periods—particularly morning and early
afternoon—present greater challenges.

Fig. 9: MAE comparison of flights grouped by ETOT (hour
of the day).

Beyond daily patterns, examining variations throughout the
week can yield valuable insights. Table V presents the average
MAE across different days at three forecasting horizons (4-
hour, 2-hour, and 0-hour). The results suggest that on certain
days predictions on longer horizons differ, but these effects
diminish closer to takeoff. This potentially indicates differ-
ences in traffic intensity, scheduling regularity, or operational
constraints that influence forecasting performance.

TABLE V: MAE by Day of the Week at Different Horizons

Day of the Week 4-Hour
Horizon

2-Hour
Horizon

0-Hour
Horizon

Monday 13.141 9.185 5.978

Tuesday 11.655 9.029 6.092

Wednesday 10.445 8.817 5.771

Thursday 13.477 9.002 5.883

Friday 13.839 9.350 6.149

Saturday 10.577 9.057 6.244

Sunday 11.752 9.365 6.283

Geographic factors also play a role, as demonstrated in
Figure 10, which shows the MAE distribution by departure
airport. Although most airports cluster around a median MAE
close to zero, some exhibit larger variability and numerous
outliers. Airports such as EIDW (Dublin), EGKK (London
Gatwick), EGGW (London Luton) and EGPH (Edinburgh)
show wider error distributions, suggesting their operational
complexity or unique local conditions make accurate forecasts
more challenging. The occasional presence of extreme outliers
highlights instances of significant prediction deviations, em-
phasizing the need for further refinement in the forecasting
process.

Fig. 10: MAE comparison of flights grouped by departure
airport.

In addition to temporal and spatial considerations, the
aircraft type also significantly influences forecasting accuracy.
Figure 11 compares MAE values (red line and markers) against
flight counts (grey bars) for different aircraft types. Commonly
observed aircraft (e.g., B738 and A320) exhibit relatively low
MAE, reflecting more stable and reliable predictions enabled
by abundant training data. Less frequent aircraft types, with
fewer than 50 flights during the testing period and grouped
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into the “Other” category, exhibit significantly higher MAE,
highlighting the challenges of accurately predicting outcomes
for underrepresented classes due to limited training data. The
’other’ category also included small aircraft, which generally
are less schedule adherent. Finally, the A333 type similarly
stands out with a higher MAE, reinforcing the need for
additional modelling strategies or enhanced data sources to
handle these rare cases effectively.

Fig. 11: MAE comparison of flights grouped by aircraft type.

In summary, the analysis reveals how predictive perfor-
mance varies depending on the time of day, day of the
week, departure airport, and aircraft type. Identifying where
and when prediction errors are most pronounced provides a
roadmap for improving forecasting models, whether by incor-
porating additional data, refining methodological approaches,
or developing specialized strategies for atypical flight cate-
gories.

G. Demand Prediction Performance

Given the observed superior performance of the LSTM-
MHA model in predicting flight delays, it is reasonable to
anticipate that the demand forecast for airspace usage and
airport resources would significantly benefit from these more
accurate predictions. The LSTM-MHA model’s predictions
are compared against the flight plan data, representing the
scheduled flight times submitted by airlines.

To simulate the DST, the model is run for an entire day.
Figure 12 gives the predicted demand at Schiphol on the
critical 4-hour horizon. Significant deviations between the
LSTM-MHA and flight plans in aircraft count, and thus
demand can be seen, however, still large errors occur. Figure
13 underscores this but highlights the improvement over the
flight plan data. It is important to note that, in this research,
only ground-related delays and effects are considered. The
flight time en route is assumed to be constant and is taken
as the flight time provided in the flight plans.

Figure 12 visualizes the demand predictions for an entire
day of traffic. While a significant shift in peak times is
observed, Figure 13 indicates that the number of incorrect
counts remains substantial. An interesting detail is the fact that

both flight plans and the LSTM-MHA produce more one-off
prediction errors than perfect predictions.

Fig. 12: Example of predicted demand of the LSTM-MHA
and flight plans at a 4-hour horizon on September 3rd 2023.

Fig. 13: Demand count error distribution of LSTM-MHA and
flight plans

VI. DISCUSSION

The analysis presented demonstrates that the LSTM-MHA
model outperforms traditional ensemble methods, the baseline
DST system, and simpler neural network architectures in pre-
dicting flight departure delays. By leveraging its recurrent and
attention-based structure, the LSTM-MHA captures temporal
dependencies and subtle variations in operational conditions,
leading to more accurate and stable predictions.

Subsection VI-A begins by evaluating the performance
gains of the LSTM-MHA relative to other models, noting
the trade-off between accuracy and computational overhead.
Next, in subsection VI-B the the knock-on effect and its
implications for forecasting in dynamic conditions are ex-
amined. Subsection VI-C compares the model’s outputs with
both the baseline DST and raw flight plans, underlining the
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LSTM-MHA’s operational advantages. Subsequently, subsec-
tion VI-D highlight how the tool can be integrated into existing
workflows and generalized to other airport contexts. Finally,
subsection VI-E addresses its current limitations, delineate
future enhancements—such as periodic retraining and broader
data integration—and recommend strategies that could further
refine and extend the model’s applicability.

A. Model Performance

Comparing multiple modelling approaches, including Ran-
dom Forest, LightGBM, CatBoost, Transformer, and LSTM
variants, reveals that neural network-based models consistently
deliver more precise predictions. Among them, the LSTM-
MHA stands out, achieving the lowest average MAE (7.26
minutes) between 300 and 0 minutes before departure, and
exhibiting strong generalization. Although the Transformer
model also shows promise, the LSTM, especially when aug-
mented with a multi-head attention mechanism, yield incre-
mental improvements. The ability to leverage all information
available, and focus on the most important parts of this data,
allows the LSTM-MHA to outperform the other models. How-
ever, these performance gains come at the cost of increased
training times and computational complexity. This trade-off,
while acceptable in a high-stakes environment like ATM,
should be considered when scaling or implementing the model
operationally.

B. Incorporating the Knock-on Effect

An essential aspect of accurate flight delay prediction is
the knock-on effect—cascading delays stemming from earlier
disruptions. This phenomenon has been receiving increasing
attention, and accurately modelling it has significant potential
to enhance prediction accuracy (EUROCONTROL [26]). De-
spite limited knock-on data in the current dataset, the feature
importance analysis highlights that even a small amount of rel-
evant information substantially improves forecasts. Expanding
the data scope to include more European flights and leveraging
real-time updates could amplify this effect. Such enrichment
would be particularly beneficial for longer forecast horizons
and periods closer to takeoff, where operational conditions
rapidly evolve.

C. Comparison with Schiphol’s Baseline and Flight Plan Data

The LSTM-MHA’s performance improvement over the
baseline DST (Random Forest-based) and raw flight plan data
underscores its operational value. By reducing the 4-hour
horizon MAE from approximately 13.8 minutes to 9.9 minutes,
the LSTM-MHA demonstrates a roughly 28% improvement.
Furthermore, while this research focuses on the longer hori-
zons, the absence of the data after 25 minutes till CBAS
entry, raises questions. Although exact DST metrics remain
undisclosed, the substantial gains observed against equivalent
datasets and the flight plans highlight the model’s potential
for enhancing prediction accuracy. Lower prediction variability
and reduced standard deviations further indicate more reliable
forecasts over time.

The success of the LSTM-MHA highlights key improve-
ments that could inform enhancements to the baseline model.
Incorporating temporal dependencies and multi-head atten-
tion mechanisms into the existing Random Forest-based DST
could allow it to better capture sequential relationships and
critical patterns in the data. Additionally, integrating spatial
and temporal features, as demonstrated in the LSTM-MHA,
may reduce prediction gaps and improve accuracy across
various forecast horizons. These insights suggest that hybrid
approaches, combining the strengths of ensemble methods like
Random Forests with the sequential modelling capabilities
of LSTM networks, could further optimize prediction perfor-
mance and operational reliability.

D. Operational Use and Generalizability

From an operational standpoint, the LSTM-MHA forecaster
can serve as both a strategic planning resource and a real-time
decision aid. Updating predictions frequently (e.g., every five
minutes) and starting as early as five hours before filed takeoff
can improve long-horizon forecasts. While early-stage predic-
tions offer valuable initial assessments of delay risks, their
reliability strengthens considerably closer to departure, when
real-time conditions stabilize. Thus, the model’s outputs can
guide various decision-making layers—from initial resource
allocations to last-minute runway and gate adjustments.

Interpreting the model’s forecasts as indicative rather than
absolute can help air traffic managers and controllers integrate
this information with other tools, expert judgment, and sce-
nario analyses. Such a holistic approach encourages proactive
regulation and mitigation strategies, minimizing cascading
delays and congestion while optimizing resource usage.

Additionally, generalizing this tool to other airports de-
pends only on data availability and local operational patterns.
Airports with similar data availability and complexity should
achieve comparable improvements, though site-specific config-
urations, traffic densities, and procedures will require model
retraining and calibration.

The LSTM-MHA’s complexity and computational demands
may pose challenges in real-time or resource-constrained en-
vironments. High-end computing infrastructure is necessary
to realize the model’s full potential, which is feasible at
large ATM organizations but may be restrictive elsewhere.
Additionally, the model’s reliance on historical data from a
specific period means it may struggle to adapt to unforeseen
events or structural changes in operations. Yearly retraining
and adaptive modelling strategies are essential to ensure long-
term relevance and resilience.

E. Limitations, Future Work, and Recommendations

This study operates within a constrained temporal window
and is largely limited to data concerning Dutch airspace.
Such a scope limits the model’s ability to capture network-
wide effects and long-term patterns fully. As highlighted in
the results, the knock-on effect has significant importance
on longer horizons. Broadening the dataset to encompass
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multiple regions, thus allowing for a more extensive knock-
on effect, can significantly improve predictions. Additionally,
exploring alternative architectures, including Transformers or
hybrid configurations that combine LSTM and attention-based
models, may simplify the modelling process while maintaining
high predictive performance.

Furthermore, the model is trained on data from March
28th 2023 to August 31st 2023, implying that it only cap-
tures the dynamics during the summer period. Retraining the
model for winter traffic is advised. Furthermore, significant
disruptions, such as the closure of certain airspace regions
or disruptive weather, could have a substantial impact on
the model’s effectiveness. Other unforeseen events might also
disrupt the system, potentially rendering the model less useful
or even disposable. This limitation highlights the importance
of continuously updating the model to adapt to new conditions
and ensure its long-term reliability.

Future work should focus on several key areas to further
enhance the model’s performance and applicability:

• Enhance the Knock-on Effect Data: Integrate compre-
hensive, real-time information on interconnected flights
to improve long-horizon predictions.

• Regular Model Updates: Implement periodic retraining
to keep the model aligned with seasonal variations and
evolving operational conditions.

• European-Wide Data Integration: Broaden the geo-
graphic scope by incorporating A-CDM data from multi-
ple European airspace regions, thereby capturing a wider
range of disruptions and dependencies.

• Optimize Data and Feature Engineering: Adjust data
refresh intervals and refine feature sets to include all
critical updates, fostering more nuanced and reliable
forecasts.

By pursuing these recommendations, advanced forecasting
models like the LSTM-MHA can achieve even greater accu-
racy and operational utility, ultimately contributing to more
efficient, reliable, and sustainable ATM.

VII. CONCLUSION

Reducing uncertainty in flow management for arriving traf-
fic at Schiphol Airport is achieved by enhancing the pre-
diction of Actual Take-Off Time (ATOT) from out-stations.
The development of a Long Short-Term Memory with Multi-
Head attention (LSTM-MHA) neural network model success-
fully captures the intricate temporal dependencies and oper-
ational complexities associated with flight departure delays.
Demonstrating superior performance, the LSTM-MHA model
outperforms traditional ensemble methods and the existing
Decision Support Tool (DST), attaining a Mean Absolute
Error (MAE) of 7.57 minutes at Schiphol Airport. Despite
the increased computational complexity introduced by the
LSTM-MHA model, the resulting enhancements in operational
efficiency and safety are considerable. This underscores the
potential of integrating advanced machine learning techniques
into existing systems, leading to significant advancements in
air traffic management.

Incorporating factors such as the knock-on effect into pre-
dictive models plays a pivotal role in enhancing accuracy. Im-
proved ATOT predictions facilitate more precise demand fore-
casting, enabling Air Navigation Service Providers (ANSPs) to
optimize demand-capacity balancing, allocate resources more
efficiently, and proactively manage potential traffic overloads.
This proactive approach not only mitigates delays but also con-
tributes to operational efficiency and safety, underscoring the
value of advanced predictive models in air traffic management.

Replacing the Random Forest of the DST with the LSTM-
MHA model has the potential to significantly enhance air
traffic flow management at Schiphol Airport, reducing delays
and improving overall efficiency. This advancement not only
benefits Schiphol Airport but is also readily transferable to
other airports, establishing a benchmark for similar appli-
cations in other airports and regions, and promoting more
reliable and efficient air travel operations. By leveraging
neural network architectures, air traffic management systems
can achieve higher levels of precision and responsiveness,
ultimately contributing to a more sustainable and effective
aviation ecosystem.

Future work should focus on expanding datasets to encom-
pass a broader range of flight information and integrating real-
time data streams to enhance model adaptability. Addition-
ally, refining feature engineering to better represent critical
factors like the knock-on effect and optimizing data update
frequencies will likely enhance predictive accuracy and model
robustness.
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APPENDIX

TABLE VI: Description of EFD Message Fields

Field Description

Timestamp The precise time when the EFD message was
sent or updated, crucial for tracking the progres-
sion of flight information over time.

Flightstate The current flight status, such as airborne, on the
ground, or in a holding pattern, determining the
flight’s operational status at any given time.

Flightplan ID A unique identifier for the flight plan, distin-
guishing each flight and ensuring updates are
correctly matched.

Aircraft ID The unique identifier for the aircraft, typically
a registration number or flight number, used to
track progress and link other data.

Aircraft Type The type of aircraft, which determines minimum
turn-around time and operational category.

EOBT Estimated Off-Block Time: The time the aircraft
is expected to leave the gate or start taxiing,
crucial for predicting takeoff delays.

TSAT Target Start-Up Approval Time: The target time
for receiving clearance to start engines.

TOBT Target Off-Block Time: The target time for the
aircraft to be ready to leave the stand.

CTOT Calculated Take-Off Time: The computed time
for the aircraft to take off, synchronized with air
traffic flow.

ETA Estimated Time of Arrival: The projected arrival
time at the destination airport, is essential for
traffic planning and ground service coordination.

ADEP Aerodrome of Departure: The airport from which
the aircraft is departing, used to track flight
origin and relevant control zones.

ADES Aerodrome of Destination: The destination air-
port, helping manage traffic flows, arrival slots,
and coordination at the destination airport.

Flightplan Detailed route information for the flight, in-
cluding waypoints, airways, and altitude assign-
ments, ensuring smooth coordination.

Message Type The category of the message (ACT (Actual),
CAL (Calculation), or EST (Estimate)), distin-
guishing the reliability of the data.
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TABLE VII: Top Feature Importances
per minutes before ATOT (Part 1)

240 120 0

Flight Plan Delay 26.4 55.03 72.51
Knock-on Delay 36.98 4.53 3.28
Flightstate SI 3.99 9.9 0.18
TOBTdelay 9.08 7.45 1.61
TSAT Delay 4.77 11.46 6.27
Modeltyp ACT 0.03 0.45 4.59
fltstate other 3.58 0.02 0.36
modeltyp CAL 0.61 0.02 0.57
eflighttime 0.45 0.83 0.42
ADEP LPPT 0.56 0.4 0.84
ADEP EGLL 0.29 0.19 0.24
actype A20N 0.19 0.13 0.2
cos ETOT 0.05 0.15 0.08
cos ETA 0.06 0.02 0.0
atfmdelay 0.32 0.18 0.01
actype E195 0.27 0.24 0.03
cobt delay 0.1 0.02 1.0
ADEP EGGW 0.13 0.28 0.04
ADEPLat 0.03 0.27 0.32
ADEP LTFM 0.44 0.21 0.02
actype E295 0.04 0.14 0.04
actype BCS1 0.24 0.08 0.03
ADEP LFMN 0.03 0.06 0.14
actype A321 0.41 0.01 0.1
ADEP LSGG 0.05 0.01 0.05
ADEP EIDW 0.03 0.03 0.18
ADEP LEAL 0.04 0.06 0.3
ADEP LFPO 0.27 0.02 0.12
actype BCS3 0.09 0.03 0.03
ADEP LEBL 0.04 0.03 0.08
ADEP ESSA 0.05 0.2 0.05
ADEP EGSS 0.09 0.01 0.15
modeltyp EST 0.12 0.18 0.05
ADEP EDDH 0.01 0.3 0.06
distance 0.03 0.1 0.13
ADEP EBBR 0.1 0.2 0.04
ADEP LOWW 0.01 0.02 0.03
ADEP EGCC 0.15 0.02 0.03
ADEP LEMD 0.17 0.01 0.12
sin ETA 0.06 0.04 0.16
ADEP LEPA 0.0 0.06 0.23
actype E75L 0.01 0.12 0.04
ADEP EGBB 0.08 0.06 0.04
ADEP EDDS 0.06 0.03 0.05
actype CRJ9 0.05 0.09 0.02
ADEP LGAV 0.04 0.02 0.09
actype E290 0.32 0.06 0.05
ADEP EFHK 0.09 0.07 0.16
ADEP EKCH 0.13 0.1 0.03
ADEP LEMG 0.1 0.01 0.21
sin ETOT 0.11 0.03 0.08
actype B38M 0.01 0.11 0.11
flighttype S 0.14 0.07 0.07
ADEP LKPR 0.05 0.01 0.02
actype A333 0.07 0.03 0.14
actype E190 0.14 0.09 0.04
actype F2TH 0.23 0.04 0.01
actype A319 0.24 0.0 0.12
actype B788 0.11 0.0 0.01
ADEP LIMC 0.1 0.07 0.22
actype PC12 0.02 0.15 0.04

TABLE VIII: Top Feature Importances
per minutes before ATOT (Part 2)

240 120 0

ADEP EDDM 0.02 0.09 0.06
ADEP EDDL 0.05 0.08 0.04
ADEP EDDM 0.02 0.09 0.06
actype B77W 0.15 0.02 0.02
actype B748 0.06 0.06 0.0
actype GLF4 0.02 0.16 0.0
ADEP ENGM 0.21 0.04 0.01
actype A332 0.07 0.02 0.01
actype C68A 0.06 0.0 0.0
day of week 0 0.04 0.14 0.0
flighttype G 0.03 0.08 0.02
actype C25B 0.02 0.01 0.02
actype CRJX 0.05 0.0 0.01
actype LJ40 0.02 0.04 0.01
actype GA5C 0.0 0.0 0.0
actype C25C 0.01 0.09 0.01
actype CL30 0.02 0.11 0.0
actype BE40 0.06 0.03 0.0
actype C525 0.01 0.15 0.05
actype E550 0.04 0.04 0.02
actype A359 0.05 0.0 0.04
ADEP LIME 0.04 0.01 0.09
actype B39M 0.01 0.01 0.02
flighttype M 0.0 0.01 0.02
actype GLF5 0.04 0.01 0.0
actype GL5T 0.0 0.0 0.01
actype E55P 0.03 0.05 0.03
ADEP LSZH 0.01 0.17 0.01
ADEPLong 0.02 0.13 0.15
actype FA7X 0.02 0.0 0.06
ADEP capacity 0.03 0.03 0.03
actype LJ60 0.08 0.04 0.01
actype C560 0.01 0.01 0.0
actype E75S 0.04 0.02 0.0
actype B744 0.02 0.02 0.0
actype B752 0.03 0.04 0.03
actype LJ45 0.03 0.02 0.01
actype GLF6 0.01 0.0 0.01
actype CL60 0.23 0.02 0.03
actype HDJT 0.0 0.01 0.0
actype E145 0.0 0.0 0.01
actype C680 0.01 0.01 0.01
actype B350 0.02 0.0 0.0
actype FA8X 0.01 0.01 0.01
actype G280 0.01 0.04 0.0
actype G150 0.0 0.0 0.0
actype B772 0.0 0.0 0.0
actype DH8D 0.0 0.0 0.0
actype E135 0.0 0.0 0.0
cap DEP 0.0 0.0 0.0
actype H25C 0.0 0.0 0.0
actype H25B 0.0 0.0 0.0
actype BE20 0.0 0.0 0.0
actype B763 0.0 0.0 0.0
actype GALX 0.0 0.0 0.0
actype ASTR 0.0 0.0 0.0
actype E545 0.0 0.0 0.0
actype A343 0.0 0.0 0.0
actype C25M 0.0 0.0 0.0
actype AC80 0.0 0.0 0.0
actype EA50 0.0 0.0 0.0
actype F100 0.0 0.0 0.0

TABLE IX: Top Feature Importances
per minutes before ATOT (Part 3)

240 120 0

actype D328 0.0 0.0 0.0
actype LJ35 0.0 0.0 0.0
actype AT75 0.0 0.0 0.0
actype LJ35 0.0 0.0 0.0
ADEP ULLI 0.0 0.0 0.0
cap DES 0.0 0.0 0.0
actype E50P 0.0 0.01 0.01
actype GA6C 0.01 0.0 0.02
actype PRM1 0.01 0.01 0.01
actype BE9L 0.05 0.0 0.0
day of week 2 0.1 0.06 0.08
ADEP LTBA 0.01 0.0 0.02
actype B789 0.04 0.0 0.06
actype CL35 0.01 0.04 0.05
actype GLEX 0.01 0.02 0.03
actype C650 0.0 0.0 0.0
ADEP LPPR 0.0 0.0 0.05
actype B737 0.04 0.08 0.05
actype GL7T 0.01 0.01 0.0
actype B735 0.02 0.02 0.02
actype E170 0.01 0.02 0.01
actype PC24 0.01 0.08 0.02
actype C56X 0.05 0.02 0.04
ADEP EGPH 0.02 0.05 0.05
actype CRJ7 0.01 0.01 0.0
actype CRJ2 0.05 0.0 0.02
ADEP LFLL 0.15 0.06 0.04
actype A318 0.1 0.0 0.08
ADEP LHBP 0.12 0.05 0.0
actype E35L 0.0 0.0 0.04
actype A306 0.01 0.12 0.01
actype B739 0.02 0.07 0.1
ADEP EDDK 0.05 0.0 0.01
ADEP EGKK 0.07 0.03 0.16
flighttype X 0.07 0.12 0.01
actype B733 0.01 0.05 0.02
wdirec 0.24 0.1 0.04
flighttype N 0.05 0.06 0.02
ADEP EDDF 0.05 0.36 0.05
ADEP LIRF 0.13 0.09 0.08
actype A21N 0.18 0.1 0.02
actype C510 0.01 0.12 0.07
actype C295 0.03 0.03 0.0
actype B738 0.08 0.13 0.15
actype C55B 0.05 0.02 0.01
ADEP EPWA 0.07 0.09 0.12
actype B77L 0.14 0.08 0.0
ADEP LROP 0.12 0.01 0.03
day of week 4 0.17 0.04 0.0
actype F900 0.09 0.06 0.06
wguts 0.2 0.35 0.12
actype C25A 0.05 0.1 0.02
day of week 3 0.23 0.38 0.07
ADEP LFPG 0.18 0.05 0.04
visibility 0.13 0.05 0.11
fltstate FI 0.16 0.12 0.03
day of week 5 0.22 0.02 0.01
day of week 1 0.24 0.06 0.04
actype A320 0.26 0.01 0.11
day of week 6 0.27 0.05 0.03
wspeed 0.6 0.16 0.2
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Chapter 1

Introduction

From the adventures of early pioneers to the web of global connectivity we see today, aviation has grown from
a new innovation to a crucial, and indispensable pillar of modern society. A pillar that is expected to grow
even further (SESAR Joint Undertaking [43]). This journey will not only continue to shrink the world but
also create new challenges, among them the need to evolve Air Traffic Management (ATM) into a system that
prioritizes sustainability while maintaining the highest standards of safety and efficiency that characterize global
air travel. This thesis tries to contribute to a more sustainable ATM system, by improving on the standards
found in operations of today.
At the core of modern ATM is the process of Demand Capacity Balancing (DCB), ensuring that the sky’s
capacity does not become a bottleneck for the flights passing through. In the Netherlands, Luchtverkeersleiding
Nederland (LVNL) has developed a decision support tool designed to forecast traffic and manage the Dutch
airspace up to five hours before aircraft arrival. This proactive approach reflects a broader commitment across
the industry to enhance the predictive accuracy and operational efficiency of air traffic control systems.
Despite the advances, the existing systems are not without their limitations. Misalignments between predicted
traffic flows and actual volumes can lead to inefficient and sometimes unnecessary traffic regulations, such as
issuing flight delays both airborne and before departure. These inefficiencies not only disrupt airline operations
but also contribute to increased fuel consumption and carbon emissions, underlining the urgent need for more
advanced forecasting techniques.

This research positions itself at the intersection of these ongoing challenges and the emerging potentials of
Machine Learning (ML) in trajectory prediction. By leveraging the capabilities of ML, this research aims to
enhance the accuracy of demand forecasts, by focussing on the uncertainty during the pre-departure phase,
thereby optimizing the flow within controlled airspaces and reducing unnecessary emissions. This aligns with
broader environmental goals and supports the sustainability targets increasingly adopted by the aviation sector.
In this study, Chapter 2 delves deeply into defining the problem and stating baseline knowledge. Following
this, Chapter 3 examines the application of demand prediction in current operations and investigates various
alternative methodologies. Chapter 4 continues this exploration by delving into the intricacies that determine
the departure time, setting the stage for incorporating machine learning techniques. Chapter 5 outlines the
basic and more advanced algorithms that have been applied for departure time prediction, among other related
metrics. This chapter also explores promising alternative methodologies that could offer new insights.
Building upon this theoretical groundwork, Chapter 6 presents the data available for this research, Chapter 7
then gives the current research gap, indicating what has been done, and where this research will focus on.
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Chapter 2

Problem Statement

Ensuring the fluid and secure movement of air traffic relies heavily on maintaining sufficient distances between
aircraft to prevent potential collisions. This responsibility lies primarily with the Air Traffic Service Provider
(ANSP), charged with guiding aircraft and ensuring adequate separation. To preserve safe distances and optimal
airspace usage, ANSPs establish operational thresholds that ensure safety along with optimal traffic flow. These
thresholds, identified as airspace capacity, form the cornerstone of air traffic management.
Upon defining the parameters of airspace capacity, scheduled air traffic gains passage through designated airspace
blocks, forming demand. Too much traffic within these blocks can lead to congestion, or traffic overload, thereby
escalating the potential for conflicts and disruptions in air traffic flow. In response, ANSPs often employ
measures such as implementing holding patterns to accommodate surplus traffic or keeping departing flights
on the ground, enabling Air Traffic Controllers (ATCos) to navigate aircraft flow safely. However, holding
patterns inevitably cause delays and heightened fuel consumption, endangering safety, escalating emissions, and
impacting operational efficiency and economic viability.
In navigating traffic overload, ATCos encounter a spectrum of options, including activating additional runways,
redistributing airspace sectors, or regulating traffic demand. However, while effective in select scenarios, regu-
latory measures may precipitate Air Traffic Flow Management (ATFM) delays, particularly at major hubs like
Schiphol. At Schiphol, where timely connections are paramount owing to its hub status, regulatory measures
may not fully resolve underlying issues, potentially causing traffic overload despite regulatory interventions.
While traditional demand forecasting methodologies rely on trajectory-based approaches or larger demand pre-
diction systems facilitated by network management initiatives, recent academic research explores alternative
methods such as sector flow models. These models give a broad view of the air traffic system, representing
the collective interaction of flights across sectors to anticipate demand fluctuations and tackle congestion more
effectively.

2.1 Decision support

To the challenges in ATFM, ANSPs adopt a process known as Demand Capacity Balancing (DCB), aimed at
optimizing the allocation of airspace capacity to meet demand effectively. Traditionally the tool that gives insight
in the traffic load is the Network Manager (NM) Ciflo tool. Recently, the Dutch ANSP, Luchtverkeersleiding
Nederland (LVNL) launched a new Decision Support System (DST) intended to improve the DCB process by
furnishing precise traffic demand forecasts and insights into available capacity resources. With this tool, ATCos
gain decision-making support, allowing them to manage potential traffic overload scenarios proactively.
The DST, as outlined in the specifications provided by the LVNL [9], is designed to enhance the management
and operation of air traffic, specifically at Schiphol Airport. The DST has the following requirements, aiming
to streamline and improve various aspects of Air Traffic Control (ATC):

• Enhanced Traffic Load Insight:

– The tool is required to provide a more precise and complete understanding of the air traffic load
approaching Schiphol. This involves advanced analytics and real-time data processing to monitor
and predict traffic flows effectively, ensuring optimal airspace utilization and safety.
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• Increased Runway and Airspace Capacity Insight:

– It must also offer detailed insights into the capacity and workload of runways and the surrounding
airspace. This includes tracking current usage rates, potential bottlenecks, and performance metrics
to manage the airspace more efficiently.

• Capacity and Demand Management Tools:

– ATFM Regulation Support: The tool should support the implementation and management of
ATFM regulations, helping to ensure that traffic flows remain within the capacity limits of the
airspace and airport infrastructure.

– Balancing ATFM Regulations and In-FIR Delays: It should manage the balance between
adhering to ATFM regulations and minimizing delays within the Flight Information Region (FIR),
optimizing both efficiency and compliance.

– Scenario Comparison: The DST should allow for the composition and comparison of various
operational scenarios, such as changes in weather conditions and runway configurations. This feature
is crucial for strategic planning and decision-making, allowing operators to assess the impacts of
potential changes and choose optimal strategies.

• Overload Situation Alerts:

– Another essential requirement is the ability to signal potential overload situations in advance. This
predictive feature enables proactive measures to mitigate risks associated with high traffic volumes,
thereby enhancing safety and operational efficiency.

By meeting these specifications, the DST aims to not only predict incoming air traffic loads but also to provide a
dynamic, responsive toolset for the Flow Management Position Controler (FMPC). This approach in managing
both the current and forecasted situations ensures that Schiphol can maintain efficient, safe operations even
under varying and challenging conditions.

The reliability of any tool is intrinsically linked to the accuracy and quality of its input data. For this reason, the
DST is heavily reliant on the quality of the forecasting done on various parameters. Among these parameters,
traffic load, or demand, stands out as a fundamental metric that needs accurate prediction. Demand, in the
context of an airport like Schiphol, refers to the number of aircraft intending to arrive or depart within a specific
timeframe. An airport, or airspace sector is constrained by capacity, the maximum number of aircraft that can
safely occupy the airspace and landing strips.

2.2 Impact of accurate forecasting

Capacity itself is not a static figure; it can react in response to a variety of factors, including changing weather
conditions, runway configuration and the availability of ATCos. Each of these factors can cause the demand
to increase or decrease. When demand exceeds this flexible capacity threshold, FMPCs are faced with critical
decisions: delay departures, hold arrivals at the gate, or implement stacking procedures for incoming flights.
Each option carries its own set of implications. Delaying departures, for example, can lead to aircraft being
held at the gate, whereas opting to delay arrivals by stacking them can result in prolonged flight times, and
higher fuel consumption, having economic and environmental impacts.

Moreover, these operational decisions often have a cascading effect on the entire aviation ecosystem. impacting
airlines economically through increased operational costs and negatively affecting passengers’ schedules, includ-
ing missed connections and extended layovers.

There are a great number of methods to calculate or estimate demand, one of which is Trajectory Based Op-
erations (TBO), further explained in Chapter 3. Currently, the DST uses the arrival times as provided by the
NM to make demand estimations, however, these have proven to be inaccurate. If the demand is overestimated,
ATCos are likely to regulate traffic, causing flights to be unnecessarily regulated, and held at the gate or holding
stack. An underestimation of the demand can result in unsafe situations, or last-minute regulations that lead
to sub-optimal airspace usage and aircraft held at holding stacks.
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The critical role of ATFM and the DST in managing air traffic flow underscores the urgent need to refine de-
mand forecasting accuracy. Modern airspace management’s complexity demands accurate, anticipatory insights
into traffic and capacity fluctuations to ensure safety, efficiency, and minimal environmental impact.

The challenges in current demand estimation highlight the necessity for advancements in forecasting methods.
Reliance on outdated data, such as NM-provided arrival times, can lead to inefficiencies and safety risks. The
adoption of more sophisticated forecasting techniques is essential for improving demand prediction accuracy.
Moreover, according to SESAR Joint Undertaking [44], the TBO approach represents the overarching direction
for the future development of Air Traffic Management (ATM) systems. This advancement requires a collabora-
tive effort from all ATM stakeholders, including ANSPs, airports, and airlines.

2.3 Role of A-CDM

Vos [50] stated that a large portion of the uncertainty in demand forecasting lies in the pre-departure phase,
and therefore it was decided that this research will focus on determining the departure time, or Actual Take
Off Time (ATOT). Moreover, the typical FMPC decision horizon currently is three to four hours. This horizon
is the sweet spot between relatively reliable information and a sufficient portion of aircraft still on the ground.
This enables FMPC to adequately issue restrictive measures whilst still having a manageable effect on the
operations. Given the complexity of this problem, the following sections will form a solid base knowledge of the
intricates that determine the ATOT.
The overseeing process of which this is a part is Airport Collaborative Decision Making (A-CDM), defined by
EUROCONTROL [10] as: ’A-CDM is the concept which aims at improving ATFM at airports by reducing
delays, improving the predictability of events and optimising the utilisation of resources’.
A-CDM is an innovative approach in ATM that focuses on improving the efficiency and capacity of airport
operations. This methodology is grounded in the principles of collaboration and information sharing among
the various stakeholders in the air traffic management ecosystem, which includes airlines, airport authorities,
ground handling services, and ANSPs.
The primary objective of A-CDM is to enhance the operational efficiency of airports by fostering better decision-
making processes. This is achieved through the real-time exchange of information and collaborative planning
among all involved parties. By doing so, A-CDM aims to optimize resource utilization, reduce delays, and
improve the predictability and reliability of airport operations.
One of the critical elements of A-CDM is its emphasis on the entire aircraft turnaround process and pre-
departure sequencing. It includes various operational phases, from the moment an aircraft lands to its subsequent
departure. The integration of these different processes under the A-CDM framework enables more accurate
planning and efficient use of airport resources, including gates, baggage systems, and runways.
The implementation of A-CDM involves leveraging advanced technology for data sharing and communication.
This includes the establishment of platforms for the real-time exchange of operational data, allowing stakeholders
to access and update information regarding flight schedules, aircraft positioning, and airport conditions. Access
to this shared data facilitates more informed and coordinated decision-making, leading to enhanced operational
effectiveness.
Furthermore, A-CDM plays a significant role in promoting environmental sustainability. By enabling more
efficient aircraft taxiing, reducing holding times, and optimizing flight paths, A-CDM contributes to a reduction
in fuel consumption and greenhouse gas emissions.
In conclusion, A-CDM represents a significant advancement in ATM, uniting diverse stakeholders through a
collaborative framework. Using the power of real-time data and collective efforts, A-CDM aims to streamline
airport operations, minimize delays, and improve the overall efficiency and sustainability of air traffic manage-
ment. Understanding this process is extremely important in predicting the ATOT, and therefore, the following
sections will describe the A-CDM process(Eurocontrol [11]).

2.4 Core Times in A-CDM

Key times in A-CDM, as given in Figure 2.1 are crucial for managing the sequence of aircraft departures and
enhancing overall airport efficiency. These times are interrelated and collectively contribute to the determination
of the ATOT, which is the exact moment an aircraft leaves the ground. The primary times discussed here are
the Calculated Take Off Time (CTOT), Estimated Take Off Time (ETOT), Target Take Off Time (TTOT),
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Estimated Off-Block Time (EOBT), Target Off-Block Time (TOBT), Target Start-Up Approval Time (TSAT),
and Actual Off-Block Time (AOBT).

Figure 2.1: A-CDM milestones (Eurocontrol [11])

• CTOT (Calculated Take-Off Time): CTOT is a time assigned to a flight specifying when it can
expect to be cleared for takeoff. This time is calculated by ATC to manage the flow of aircraft both
departing from airports and in the airspace. CTOT is crucial in minimizing delays and optimizing air
traffic sequencing to enhance efficiency in airspace usage.

• ETOT (Estimated Take-Off Time): ETOT refers to the estimated time at which an aircraft will take
off. This estimate considers various factors, including CTOT adjustments, airport operations, and the
aircraft’s readiness. ETOT serves as a dynamic value that adjusts based on real-time data, providing a
more accurate forecast of aircraft movement.

• TTOT (Target Take-Off Time): TTOT is the target time established for a flight’s takeoff, used by
air traffic controllers and airport operators to plan and schedule the sequence of departures. TTOT is
influenced by a range of operational factors and aims to synchronize with CTOT to ensure smooth flow
of departures.

• EOBT (Estimated Off-Block Time): EOBT is the time at which the aircraft is estimated to commence
its movement from the parking stand for the purpose of takeoff. EOBT is a fundamental component in
the pre-departure sequence, affecting the calculation of CTOT and TTOT, and is used to plan airport
ground handling and air traffic control operations.

• TOBT (Target Off-Block Time): TOBT is set by the aircraft operator or ground handler and indicates
the target time at which the aircraft is expected to begin its movement from the parking spot towards the
runway. It is a key reference time used by ATC to sequence departures efficiently.

• TSAT (Target Start-Up Approval Time): TSAT is the time at which the aircraft is expected to
start its engines and begin taxiing towards the runway. This time is closely coordinated with TOBT to
ensure that the aircraft departs within its assigned CTOT window.

• AOBT (Actual Off-Block Time): AOBT is the actual time when the aircraft moves off its parking
stand. This time marks the beginning of the aircraft’s journey from the gate to the runway and is critical
for ATC to track and manage the precise flow of departures.
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• ATOT (Actual Take-Off Time): ATOT is the precise moment when the aircraft leaves the ground.
Accurate predictions and adjustments of CTOT, ETOT, TTOT, EOBT, TOBT, TSAT, and AOBT are
vital for effective A-CDM, ensuring that the sequence of departures is managed efficiently to minimize
delays and optimize airport and airspace capacity.

These core times are integral to A-CDM, ensuring efficient airport operations, minimizing delays, and enhancing
the predictability of events. By adjusting and predicting these times accurately, A-CDM helps optimize the
utilization of resources at the airport and in the airspace.

2.5 ATOT in (A-CDM) airports

Having described the times that determine the ATOT, this section will give more insight into the A-CDM
process. Oosterhof [32] conducted a study comparing the communication patterns between A-CDM, Advanced
ATC TWR, and Standard Airports. The findings suggest that the type of airport does not significantly affect
the quantity of updates communicated; rather, it influences the types and accuracy of those updates. This
section will describe the A-CDM process, however, non-A-CDM airports will have similar behaviour.

Starting approximately three hours before the EOBT, when the flight plan is activated, various data points
are checked for coherence, ensuring that the data from the airlines, airports, and ATC align. As the aircraft
approaches its destination (inbound), key milestones such as Flight Information Region (FIR) Entry or Local
ATC and Actual Landing Time (ALDT) are logged. Once on the ground, the aircraft’s transition through
taxi-in, turn-round, and taxi-out phases are carefully tracked.
The TOBT is updated, taking into account any Minimum Turn Round Times (MTTT) required for that par-
ticular flight. This is subject to updates by the Aircraft Operator (AO) or Ground Handler (GH) based on
operational requirements. ATC then issues a TSAT, indicating when the aircraft can start its engines and
begin taxiing for departure. Boarding times are monitored, and any discrepancies can lead to adjustments in
the pre-departure sequence. Once all checks are complete, the ATOT is determined when the aircraft leaves
the tarmac. This process ensures that the airport’s runway capacity is used optimally, reducing delays and
improving efficiency in the overall air traffic management system. EUROCONTROL [10]

Koolen and Suciu [26] give the following updates given as part of the A-CDM process):

1. Predicted Departure Planning Information (P-DPI): This message is intended to provide initial
airport data before the A-CDM process begins. It shares relevant information as soon as it becomes
available, denoted as ‘DPIEXPECTED’ in the A-CDM field.

2. Early Departure Planning Information (E-DPI): This message confirms that an airport slot and
flight plan for a flight have been correlated at the airport. Its purpose is to prevent duplicate flight plans
and eliminate ghost flights. In the A-CDM field, this state is marked as ‘ESTIMATED’.

3. Target Departure Planning Information - Target (T-DPI-t): The aim of this message is to provide
a Take-Off Time (TOT) based on the Estimated Landing Time (ELDT) and the EXIT of the inbound
flight. It also includes estimations for the turnaround, off-block, and taxi times of the outbound flight.
This state is indicated as ‘TARGETED’ in the A-CDM field.

4. Target Departure Planning Information - Sequenced (T-DPI-s): This message contains Take-Off
Time information based on calculations from the Pre-Departure Sequencer, using the TOBT and the taxi
time. It is shown in the A-CDM field as ‘PRESEQUENCED’.

5. Air Traffic Control Departure Planning Information (ATC-DPI): This message informs that
the flight has ‘off-blocked,’ indicating that it is under ATC control and taxiing to take-off. It provides
an estimate of the Take-Off Time with higher accuracy than earlier messages. This state is denoted as
‘ACTUALOFFBLOCK’ in the A-CDM field.

2.6 Partners in A-CDM and their responsibilities

Within the A-CDM framework, the following roles and responsibilities apply as given by IATA [23]:
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• Aircraft Operator: The AO is responsible for providing the Flight Plan, and any subsequent updates, such
as DLA/CHG messages, providing an accurate TOBT and ensuring that the flight crew is aware of the
need to call for start-up at TSAT and TOBT.

• Ground Handling Agent: Providing an accurate TOBT with the Operations Control Centre (OCC),
ensuring the flight crew is aware and ready for departure at the TOBT

• Airport Operator: Providing the airport schedule information and gate planning, as well as overall coor-
dination and monitoring of the A-CDM process.

• Air Traffic Service Provider (Tower): Establishing, maintaining and executing the pre-departure sequence,
providing TSAT and TTOT, ensuring start-up is issued according to TSAT, ensuring flights depart within
their CTOT. Moreover, the Air Traffic Service Provider (ATS) should define and verify Variable Taxi-
Times (VTT)s

• Air Traffic Flow Management Unit: ATFM should coordinate the network it is responsible for, dissem-
inate flight plan data, coordinate DCB through the provision of CTOTs, providing the updated arrival
information, and share relevant A-CDM data with Network Shareholders.

• De-Icing Operator: provide the De-Icing status of the aircraft, and predict the estimated de-icing times.

The integration and coordination of all partners involved in the A-CDM process are essential for achieving opti-
mized airport operations and ensuring timely departures and arrivals. Each partner’s role and responsibilities,
as outlined, contribute uniquely to the A-CDM framework, highlighting the importance of collaboration and
shared information in the complex ecosystem of airport operations.
The AO plays a pivotal role by providing the initial Flight Plan and any necessary updates, ensuring that the
entire operational planning process is based on accurate and current data. The AO’s responsibility to provide an
accurate TOBT is critical, as it serves as the foundation for the pre-departure sequencing process. By ensuring
that the flight crew is promptly informed about the need to call for start-up at the TSAT and TOBT, the
AO facilitates a smooth integration into the departure sequence, optimizing the use of available resources and
minimizing delays.
GH Agents are key players in preparing the aircraft for departure, directly impacting the accuracy of the TOBT
communicated with the OCC. Their role ensures that all ground services, from baggage handling to refuelling,
are completed in time for the aircraft to depart as scheduled. The coordination between GH Agents and the
flight crew ensures that there are no delays in aircraft readiness, contributing to the overall efficiency of airport
operations.
The Airport Operator, through its provision of airport schedule information and gate planning, ensures that
the necessary infrastructure is available and allocated efficiently to accommodate the planned operations. Their
role in coordinating and monitoring the A-CDM process is vital for managing the complex interactions between
multiple stakeholders and ensuring that the airport operates smoothly and efficiently.
ATS Providers, including the TWR, are responsible for the real-time execution of the departure sequence, issuing
TSAT and TTOT based on the current operational picture. Their ability to adjust the pre-departure sequence
in response to operational changes ensures that flights can depart within their allocated CTOT, maintaining
the overall flow of traffic and minimizing disruptions to the network.
The ATFM’s role extends beyond the airport, coordinating the broader network to ensure that flights are
integrated seamlessly into the overall air traffic system. By sharing flight plan data and coordinating DCB
through the provision of CTOTs, the ATFM plays a critical role in managing air traffic flows and preventing
congestion both on the ground and in the air.
Lastly, the De-Icing Operator’s role is particularly crucial in adverse weather conditions, ensuring the aircraft’s
safety through de-icing operations. Their ability to provide accurate de-icing status and predict estimated
de-icing times is essential for integrating these operations into the pre-departure sequence without causing
unnecessary delays.
In summary, the A-CDM framework relies on effective collaboration and information sharing between all partners
involved in the airport’s operations. By clearly defining the roles and responsibilities of each partner, A-CDM
ensures that all aspects of the departure and arrival processes are optimized, leading to improved operational
efficiency and reduced delays.

2.7 Horizon

In any research that aims to make a prediction, the horizon—or the timeframe over which predictions are
made—is a crucial element that significantly impacts the study’s outcomes. The prediction horizon defines not
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only the scope and scale of the investigation but also influences the complexity of the models used, the reliability
of the predictions, and the strategic value of the insights gained.

The length of the prediction horizon directly influences the quantity and type of data required. Longer horizons
often necessitate historical data spanning several years to capture long-term trends and cyclic patterns, while
shorter horizons may rely more on recent data that reflect current conditions. The quality of data, including its
resolution, completeness, and relevance, also plays a critical role in the accuracy of predictions. Complications
arising from longer horizons include the increased potential for disruptive events and changes in underlying
patterns that historical data may not account for. For instance, technological innovations, policy changes, and
unexpected economic shifts can all render long-term forecasts less accurate.

The problem described in this chapter asks for a horizon of 4 hours. This is sufficient for ATFM regulations in
the European Region and is the horizon on which decisions are currently made by FMPCs. Before delving into
the various reasons that can delay a flight, it is of great importance to list all locations a flight can be within
the horizon of this research.

2.7.1 Location of the aircraft 4 hours before departure at the out-station
Understanding the location of an aircraft four hours before departure at the out-station- the station from which
the aircraft will depart to Schiphol from- is crucial, despite seeming redundant. This knowledge significantly
reduces operational uncertainties and determines the data available for managing departures effectively.

At the Outstation

If the aircraft is already at the out-station four hours prior to departure, it typically undergoes a series of critical
pre-flight procedures- the turnaround process. These include maintenance checks, refuelling, cargo loading, and
passenger boarding. Each activity must be precisely coordinated to ensure timely departure. Challenges such
as adverse weather, technical issues, or airport congestion can complicate these operations, necessitating robust
contingency strategies to maintain the schedule. Efficient management during this period is vital for completing
the turn-around process promptly.

Airborne

Adding one complicating factor is when an aircraft en is en route to the out-station. This needs careful
monitoring to ensure it lands in time for necessary turn-around activities. Delays due to air traffic, weather
conditions, or operational constraints can significantly shorten the available time for ground operations, which
are essential before the next departure. Collaboration between ATC and the airline’s operational team is
essential to optimize the route and manage time efficiently while upholding safety standards.

At Schiphol

Another complicating factor arises if the aircraft is still located at Schiphol. In this case, the turnaround process
at Schiphol is also uncertain. Schiphol serves as a major hub in the hub and spoke system utilized by many
airlines. This system routes passengers through a central airport hub, from which they are transported to
their final destinations via the spokes—routes leading to other airports. Schiphol’s role as a hub introduces
complexities such as higher traffic volumes and potential logistical bottlenecks. Effective management is required
to prevent these factors from causing delays in the aircraft’s subsequent departure to the outstation. The hub
and spoke model can create additional pressure on the turnaround process due to the synchronized arrival and
departure times designed to maximize passenger connectivity.

Other Airport

When an aircraft is positioned at a third airport, it encounters challenges similar to those at Schiphol, includ-
ing managing logistics and ensuring timely departure readiness. The degree of information transparency and
sharing at different airports might vary, introducing further uncertainties in departure planning. Ensuring con-
sistent communication and data-sharing practices is critical for minimizing these uncertainties and optimizing
departure readiness.
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These scenarios underscore the importance of precise location tracking and operational planning for aircraft
scheduled for departure. By managing these elements effectively, airlines can enhance operational efficiency,
reduce delays, and improve overall satisfaction.
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Chapter 3

Demand

Understanding and predicting demand is a fundamental aspect of efficient Air Traffic Management (ATM). This
chapter explores various methods used to predict traffic load or demand in air transportation, which is crucial
for planning, safety, and optimizing airspace and airport operations. As air travel continues to evolve with
increasing traffic volumes and technological advancements, the ability to accurately forecast demand becomes
more critical in mitigating congestion and enhancing the operational efficiency of air traffic systems.
Demand prediction in air transportation is a complex field that combines data analysis, modelling, and fore-
casting techniques to estimate the number and flow of aircraft in different sectors of airspace at any given time.
These predictions help air traffic controllers and airport authorities make informed decisions about resource
allocation, flight scheduling, and airspace management, ultimately ensuring safety and minimizing delays.
This chapter will delve into the primary methods for predicting air traffic demand, from traditional trajectory-
based models to more contemporary approaches like network flow and complexity analysis. Each method offers
unique insights and comes with its own set of advantages and limitations, which will be discussed in detail. By
examining these methods, this chapter aims to highlight their roles in supporting the dynamic and increasingly
complex environment of global air traffic management.
The following sections will break down these methodologies, assess their impact on the management of air traffic,
and explore how they are implemented in real-world scenarios to meet the challenges posed by the ever-growing
demand for air transportation.

3.1 Demand Prediction Methods

Demand or traffic load predictions are crucial for efficient airspace management. Traditionally, these predictions
are derived from aircraft trajectories, which consist of Four Dimensional (4D) positions—latitude, longitude,
altitude, and time. By analyzing these positions, air traffic controllers can determine whether an aircraft will
occupy a specific sector at a given time, and thus, calculate the total number of aircraft expected in that sector
(de Leege et al. [7]). While this trajectory-based method is widely used, including by Air Traffic Controllers
(ATCos) at Luchtverkeersleiding Nederland (LVNL) who utilize Network Manager (NM) data from flight plans,
alternative approaches like network flow analysis and complexity analysis offer additional insights.

3.1.1 Trajectory-based Demand Prediction
The conventional method for predicting demand involves calculating the 4D trajectories of multiple aircraft, as
detailed by Wu and Pan [53]. This approach consists of two main stages:

1. Pre-Departure Prediction: Using historical radar data, the model estimates total flying time and
predicts future positions and altitudes at various intervals throughout the flight. This stage utilizes
statistical regression models to account for variables like traffic flow and weather conditions, which may
affect flight duration.

2. Post-Departure Updates: After departure, the model continuously updates its predictions based on
real-time radar data, ensuring close alignment with the actual flight path. This enhances the reliability
and utility of the forecast, adapting to any changes in flight conditions.

These predicted trajectories allow for estimating when an aircraft will enter a specific airspace sector, thereby
facilitating demand forecasting. However, this method has its limitations. As Pérez Moreno et al. [36] points
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out, breaking the trajectory into small segments for precise predictions can be computationally expensive and
data-intensive. Despite these challenges, data provided by the Knowledge & Development Centre (KDC) and
the current operation run by LVNL supports the feasibility of this approach, building on research by Vos [50].
Additionally, the Single European Sky Aviation Research (SESAR) initiative underscores the importance and
belief in the possibility of Trajectory Based Operations (TBO) in future ATM (SESAR Joint Undertaking [44]).

Limitations of Trajectory-Based Demand Prediction

There is a large variety of factors for uncertainty in measuring demand using TBO. Könnemann [25] analysed
NM data to quantify the underlying uncertainty in demand predictions for the MUAC upper area control
sectors in the Benelux and Germany. The study is based on the MUAC area but uses factors that will apply
globally. Following from the study, departure time is the factor that has the greatest influence on sector demand
prediction. This follows from the high correlation between departure and arrival time. A departure time is a
good indicator of arrival time, although Performance Review Commission [33] shows that aircraft can speed up
to compensate for departure time delays as visualised in Figure 3.1. Because of the high impact on demand
prediction, this study will focus on departure time prediction, and thus the other factors will remain largely out
of scope.

Figure 3.1: Difference between arrival and departure punctuality. (Performance Review Commission [33])

Figure 3.2 shows that the standard deviation in the occupancy count is still around 30%, implying there is quite
some room for improvement. Having such high variance in the prediction on demand makes the decisions made
by Flow Management Position Controler (FMPC)s harder, which can be the cause for unnecessary restrictions.
Könnemann [25] argues that the large prediction error is due to the outflow of traffic, traffic that was supposed
to enter the section, but had to re-route. Re-routing can be due to various reasons and is therefore not
straightforwardly implemented in an aircraft performance model. Trajectory-based operations prediction should
be able to capture outflow.

Figure 3.2: Percentage prediction error (Könnemann [25])
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Figure 3.3: Visualisation of the sector flow model (Sridhar et al. [46])

3.1.2 Aggregate model
Traditional demand forecasting in ATM has heavily relied on the analysis of trajectories derived from flight plans.
While short-term trajectory predictions for airborne flights exhibit high accuracy, the predictive reliability fades
significantly over longer forecast horizons. This is due to a large variety of factors, including Air Traffic Control
(ATC) interactions, weather conditions, and ground processes affecting aircraft before they become airborne.
Although Trajectory Prediction (TP) and Demand Capacity Balancing (DCB) have seen improvements, a
substantial body of research has pivoted towards a new method: aggregate demand forecasting.
One of the frontrunners of this new method was the study by Sridhar et al. [46], who conceptualized the U.S.
National Airspace System through a model comprising 22 airspace blocks, alongside an international block.
This model, disregarding individual flight trajectories, instead focuses on the flow of traffic through these blocks,
predicting aircraft occupation counts as a measure of demand. Utilizing a linear dynamic system, the model
uses a state space representation, where each block’s state indicates its current aircraft count. A transition
matrix, derived from observed traffic flow probabilities within the training dataset facilitates the prediction of
traffic flow between sectors at every time step.
The effectiveness of this model was tested by training it with traffic data from two consecutive days, followed
by demand prediction for a third day using only the flight schedule as input. Despite slight delays in demand
curves and underprediction of peak traffic volumes, Sridhar et al. [46] argue that the model’s predictive capacity
remains robust enough to give a warning of potential demand overloads.
Building upon this foundation, Sridhar et al. [46] in a subsequent study sought to minimize prediction errors by
employing a diverse set of models, each trained on different datasets to account for daily, weekly, and seasonal
variations. The integration of a probabilistic hypothesis testing block further refined the model selection process,
although the autonomous predictive capability of this system remains a future objective.

Limitations of aggregate model

One of the primary concerns with the aggregate model is its generalization over specificity. While the simplifica-
tion facilitates easier demand prediction on a macro level, it risks overlooking the behaviours and characteristics
of individual flights. This oversight can lead to potential inaccuracies in forecasting, particularly noticeable
during irregular operations or within sectors that experience highly variable traffic patterns.
The model’s predictive accuracy is also heavily influenced by the quality and completeness of the input data it
relies on, such as flight schedules and historical traffic data. Any inaccuracies or gaps in this data can lead to
significant deviations between predicted and actual demand, undermining the model’s reliability.
Another limitation is the model’s reduced effectiveness over extended forecasting horizons. While it shows
promise for short- to medium-term predictions, its accuracy tends to wane for long-term forecasts. This reduction
is largely due to the model’s challenges in accommodating future alterations in flight schedules, air traffic control
policies, and unexpected events that could significantly impact traffic flow.
The static nature of the aggregate model further constrains its capacity to adapt to the dynamic and often
unpredictable changes that regularly occur in airspace utilization, weather conditions, and ATC interventions.
These limitations hinder the model’s ability to make real-time adjustments to its predictions.
Addressing these challenges necessitates ongoing research and development efforts aimed at refining the aggre-
gate model’s capabilities. The integration of real-time data feeds, advanced analytics, and machine learning
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algorithms presents viable pathways to enhance the model’s accuracy and responsiveness to the dynamic condi-
tions of ATM. Furthermore, the development of hybrid models, which combine the strengths of both aggregate
and trajectory-based approaches, could offer a more nuanced and comprehensive solution to demand prediction
in ATM.

3.2 Factors Influencing Demand in Air Transportation

The demand for air transportation is influenced by a complex interplay of factors, which include but are not
limited to the capacity constraints at airports, the scheduling strategies of airlines, and external conditions
like weather. As highlighted by Barnhart et al. [3], the fundamental challenge facing air transportation is the
balance between capacity and demand, particularly at congested airports. This balance is critical not only for
maintaining operational efficiency but also for ensuring a high level of service reliability.
Several key factors influence demand in the air transportation sector:

• Airport Capacity Constraints: The capacity of an airport, especially during peak hours, significantly
impacts demand. Airports with higher capacities can accommodate more flights, thereby potentially
increasing demand.

• Weather Conditions: Weather is a significant factor affecting both demand and capacity. Poor weather
conditions can lead to delays, cancellations, and rerouting of flights, directly impacting demand.

• Economic Conditions: The general economic environment influences the demand for air travel. Eco-
nomic downturns typically lead to a decrease in demand, while economic upswings have the opposite
effect.

• Airline Scheduling Strategies: Airlines’ strategies regarding flight schedules, frequencies, and the
choice of aircraft size also influence demand. Efficient scheduling can optimize capacity utilization and
meet passenger demand effectively.

Standfuß and Whittome [47] studied the causes of demand fluctuations following the COVID-19 pandemic.
Using a regression analysis, the effects of volatility on resilience are quantified, and the aspects that influence
the demand are determined.

• External Shocks: Highlighting the unprecedented COVID-19 pandemic, financial crises, geopolitical
strife, and natural calamities as key disruptors, the study illustrates how such events precipitate abrupt
shifts in traffic volume, underscoring the fragility of air traffic demand to sudden global upheavals.

• Capacity Disturbances, Climate Change, and Safety Issues: These factors are highlighted as crit-
ical challenges to the resilience of ATM, demonstrating how they collectively contribute to the complexity
of maintaining a stable air traffic system in the face of ever-evolving external pressures.

• Inefficient Resource Planning due to Forecast Limitations: The research highlights the challenge
of accurate demand forecasting, a task made even more daunting by air traffic’s dynamic nature, severely
hindering Air Traffic Service Provider (ANSP)s ability to plan resources effectively.

• Volatility in Traffic Movements: The study highlights the growing unpredictability and volatility in
traffic movements, caused by both local and global events, which disrupt regular traffic flows and make a
recalibration of traffic management strategies necessary.

Standfuß and Whittome [47] analysis is pivotal for exploring the direct and indirect effects of the COVID-19
pandemic on air traffic and its broader implications on the resilience of the aviation industry. By quantitatively
assessing the impact of volatility on resilience, the study provides a crucial metric for ANSPs to measure their
preparedness and adaptability to future shocks.
Furthermore, the research explores the granularity of operational levels and their influence on demand, offering
nuanced insights into volatility’s varying impact across different ATM divisions. This granularity reveals the
differential challenges faced by various components of the air traffic system, underscoring the need for tailored
strategies to enhance resilience at all levels.
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Chapter 4

Predictablility of the Actual Take-Off
Time

The Actual Take Off Time (ATOT) is a critical factor in the efficiency and reliability of air traffic management
systems worldwide. Accurately forecasting ATOT is essential for minimizing delays, optimizing airspace and
airport capacity utilization, and improving overall passenger satisfaction. This chapter delves into the complex
dynamics that influence ATOT, including the operational, environmental, and systemic factors that can affect
the timeliness of flight departures.
Understanding and mitigating the causes of delays are central to enhancing ATOT predictability. This explo-
ration begins with a detailed analysis of the various elements that can precipitate delays—from operational
inefficiencies to adverse weather conditions and air traffic congestion. By examining how these factors correlate
and impact departure times, stakeholders in the aviation industry can develop more robust strategies to manage
and predict delays effectively.
Further, this chapter will explore the sophisticated methodologies and technologies employed to forecast and
improve the predictability of ATOT. These include advanced modelling techniques, real-time data analytics, and
collaborative efforts between airlines, airports, and air navigation service providers. Through comprehensive
case studies and statistical analysis, the effectiveness of these methodologies in various operational contexts will
be assessed.
As the global air traffic landscape becomes increasingly complex and crowded, the variety of factors that cause
delays improves. The insights provided in this chapter aim to contribute to the ongoing efforts to enhance air
traffic efficiency and ensure that the aviation industry can meet the challenges of an ever-evolving operational
environment.

First the causes and factors for delays are listed, setting the stage for the rest of the Chapter. This is followed
by a more thorough description of each factor. Weather impacts are described in Section 4.2, airport capacity
in Section 4.3 and Knock-on delays in Section 4.4. This is followed by the result of all of these delays, and
often seen as the cause: Air Traffic Flow Management (ATFM) delays. Finally, the last factor considered in
this research is the turn around, in Section 4.6.

4.1 Causes and Factors Affecting Delays

Delays in air traffic management can be attributed to a variety of factors, often influenced by both temporal
and spatial correlations. Figures 4.1 and 4.2 depict these correlations, highlighting how delays accumulate over
time and are influenced by geographical proximity to major airports.
Figure 4.1 illustrates the daily distribution of delays, showing a strong temporal correlation with delays tending
to accumulate throughout the day and decrease overnight. This pattern suggests a reset effect where delays are
managed overnight when air traffic is generally lower.
Spatial dependencies are clear as airports near major hubs experience significant delays due to increased air
traffic, as shown in Figure 4.2.
A comprehensive analysis by Wang et al. [51] at Beijing Capital International Airport, but widely applicable
categorizes several key factors influencing delays:

• Flight Attributes: The differentiation in priority and resource allocation based on airline properties,
such as the airline’s base status at the airport. Additionally, the aircraft’s capacity is underscored as a
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Figure 4.1: Accumulation of delays (Li et al. [29])

Figure 4.2: Spatial distribution of delays in the US (Li et al. [29])

pivotal factor, where larger aircraft are prioritized due to their higher passenger capacity, thus impacting
delay patterns. Notably, the cascading effect of delays from previous flights also emerges as a crucial
element, indicating a direct linkage between successive flights’ punctuality.

• Weather: Weather conditions stand as a predominant factor affecting flight delays, highlighting the
significant influence of atmospheric conditions at the departure airport on flight timeliness.

• Periodic Data: Time-related factors, including the hour of the day, day of the week, and seasonal
variations, alongside holidays, are generally identified as influencing flight delay patterns, necessitating
sophisticated predictive models to account for these temporal impacts.

• Arrival/Departure Pressure: The study delves into the concept of airport congestion, measured
through arrival/departure pressure, as a determinant of flight delays, reflecting the operational load and
its effects on flight schedules.

• Cruise Pressure: Additionally, the conditions during the cruise phase, such as air route congestion
and adverse weather, are explored, highlighting the broader operational environment’s impact on flight
punctuality.

These factors highlight the complex nature of predicting and managing flight delays. The approach suggested
by Wang et al. [51] uses ensemble methods to enhance the accuracy of delay predictions, ultimately aiming to
improve operational efficiency and passenger satisfaction by reducing delays.
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In an effort to quantify the levels of delays, Hanley [21] introduces a metric called NAS, distinguishing between
"Low NAS" and "High NAS" states. "Low NAS" refers to periods of minimal delays commonly occurring
during low air traffic periods like late at night. Conversely, "High NAS" indicates times of high congestion and
is often short-lived but intense, such as the "High ATL" state affecting the Atlanta area. This factor shows that
delays are related spatially, but also temporary.

4.2 Weather Impact at Airports

Dalmau et al. [6] discuss the impact of various adverse weather conditions on airport capacity, emphasizing how
these conditions necessitate the implementation of ATFM regulations. The key weather phenomena affecting
airport operational capacity include:

• Low Visibility: Conditions such as fog and heavy rain necessitate increased spacing between aircraft
due to reduced visibility, thus decreasing runway throughput.

• Wind: High winds, particularly crosswinds, restrict the operational use of runways and necessitate traffic
management adjustments. When crosswinds exceed certain thresholds, it becomes unsafe for aircraft to
land and take off, effectively reducing the available runway capacity.

• Thunderstorms and Convective Weather: These events cause rapid changes in visibility and wind
patterns and can introduce hazards like hail. Such conditions frequently lead to the temporary closure of
airspace or the rerouting of flights, significantly impacting airport capacity.

• Snow and Ice: These conditions extend the time required for aircraft deicing and runway clearing,
delaying all airport operations. Ice can also render taxiways and runways unusable, further reducing
operational capacity.

• Fog: Similar to low visibility scenarios, fog substantially decreases the number of flights that can safely
operate, significantly reducing airport capacity, particularly affecting landing and takeoff operations.

These insights are crucial for planning and implementing ATFM regulations to mitigate the adverse effects on
airport throughput and ensure safety and efficiency in air traffic operations.
Furthermore, European airports operate within a complex network where each airport handles air traffic, demand
calculations, weather impacts, and flow management differently. These operational differences often reflect
the geographic locations, traffic volumes, and the sophistication of their Air Traffic Control (ATC) systems.
Considering the substantial impact of weather on delays, this section explores how different airports manage
the variability in weather impacts.
Rodríguez-Sanz et al. [39] categorize airports using five indicators: operational thresholds, the impact of weather
uncertainties, the synthetic index for weather conditions, reaction to delay, and operational strategies. Op-
erational thresholds define the critical points at which weather impacts severely affect airport performance,
indicating resilience and vulnerability to various weather events. The impact of weather uncertainties measures
an airport’s ability to predict and react to uncertainties such as visibility and wind speed, which are critical for
operational efficiency. The synthetic index for weather conditions integrates various meteorological parameters
to evaluate comprehensively the weather impacts on airport performance.
Both Rodríguez-Sanz et al. [39] and Dalmau et al. [6] note that airports operating close to their maximum
capacity are more severely affected by adverse weather, leading to significant delays and reduced throughput.
The final indicator is the effectiveness of an airport’s operational strategies in response to adverse weather,
enabling better-performing airports to maintain high capacity under challenging conditions.

4.3 Capacity at airports

Determining airport capacity is a complex process that involves understanding the theoretical limits of an
airport’s infrastructure and its practical operational performance. According to He and Pan [22], the process
for estimating airport capacity involves combining empirical methods with analytical approaches to capture the
airport’s actual operational limits as closely as possible. A capacity envelope was constructed to approximate
the airport’s maximum operational capabilities, reflecting both arrival and departure traffic demands.
This methodology involves observing peak arrival and departure counts over a given time period, under the
assumption that these peaks represent the airport’s maximum operating capacity. These peaks are used to
construct a capacity envelope, which serves as a graphical representation of the airport’s practical capacity
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across various operational conditions. The study also introduces a collaborative optimization model that reflects
the relationship between airport capacity and traffic demand, using an optimization algorithm to allocate flight
schedules.
A key component of this method is the introduction of a priority ratio to adjust management preferences
dynamically for arrival and departure traffic, revealing the synergy between traffic flow demand and airport
capacity. The outcome of this study showed an improvement in flight on-time performance rates by 6% in
their case study, demonstrating the efficacy of their proposed method in maximizing airport capacity and traffic
flow demand without the need for physical expansion of airport facilities. This approach not only aids in
efficiently utilizing existing airport capacities but also provides a model for balancing supply and demand in air
traffic management, thereby reducing congestion and delays, enhancing customer satisfaction, and promoting
sustainable growth in the aviation industry (He and Pan [22]).

Figure 4.3: Schematic of the determination of airport capacity according to (He and Pan [22])

Rodríguez-Sanz and Rubio Andrada [40] define airport capacity as the ability of the airport infrastructure
and operational procedures to process entities such as aircraft, passengers, luggage, vehicles, etc., within a
specific interval of time. This capacity is inherently multi-faceted and dynamic, influenced by both available
infrastructure and various operational procedures. It’s typically measured in both annual and hourly metrics,
depending on the planning needs. The article highlights the difficulties in accurately describing airport capacity
due to its complexity and the influence of external factors and operational procedures. It points out the challenge
of aligning long-term planning, which uses annual capacity figures, with the need for more immediate, hourly
throughput measures due to daily and seasonal traffic variations. By examining hourly and annual air traffic
volumes at 50 European airports from 2004-2021, the study provides insights into defining a suitable peak
hour for capacity evaluation. It emphasizes the need for a detailed understanding of daily traffic distribution
patterns and how they vary by the hour of the day. This analysis helps in planning new airport infrastructures
by identifying when and where congestion is likely to occur.
Limited airport capacity significantly contributes to delays in air travel. Operating near or at capacity limits,
airports face substantial delays from minor disruptions or increased traffic:

• Bottlenecks: Physical constraints such as limited runways, gates, or baggage handling facilities can
create bottlenecks, slowing aircraft movements and causing delays.

• Operational Inefficiencies: High traffic volumes can overburden airport resources and personnel, lead-
ing to operational inefficiencies that prolong aircraft processing times.

• Increased Turnaround Times: Limited gate availability or delayed services can extend the time aircraft
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spend on the ground, affecting their scheduled departure times and causing a ripple effect of delays across
the network.

• Traffic Management Challenges: Air Traffic Control (ATC) may need to hold aircraft at their origin
airport or in the air near the destination to manage traffic flows, directly impacting departure and arrival
schedules. This is often referred to as Air Traffic Flow Management (ATFM) delays, which are further
discussed in the subsequent section.

Effectively managing and optimizing airport capacity is crucial for minimizing these delays and improving the
overall efficiency and reliability of air travel.

4.4 Knock-on Delay

According to EUROCONTROL [14] around 48% of all delays are ’Knock-on’ delays, which means that the
delay is caused by another aircraft delay. This indicates that flight delays do not often occur in isolation but
can propagate through the network, affecting subsequent flights and even other airports. This phenomenon,
known as knock-on delays, significantly complicates traffic management and scheduling within airports. Zhang
et al. [54] explored the propagation effect of flight delays among airports and introduced a new measure called
the propagation index to analyze the interrelationships among airports concerning flight delays. Guo et al. [18]
further underscore the importance of knock-on delays and predict departure delays largely influenced by the
knock-on effect. This indicates the importance of incorporating the network effects.
Delay propagation occurs when the arrival delay of a flight affects the departure time of the same aircraft for
its next segment, potentially causing further delays down the line. While scheduled turnaround times may
sometimes absorb these delays, the ripple effect can lead to missed connections for passengers and cascading
delays throughout the day. Moreover, because flights of the same airline share ground crew teams and facilities
such as runways and gates, the delay of one flight can impact several others, both within the same airline and
for other carriers using the same facilities.
The propagation index quantifies the effect of delay propagation by measuring the causality among delay time
series, which helps in understanding how delays in one airport can influence operations in another. This metric
is crucial for airports to predict and manage delays more effectively, aiming to minimize the broader impact on
the air traffic network.
According to Zhang et al. [54], this index has shown a high correlation with observed airport delays, underscoring
its potential utility in enhancing the operational strategies of airports to mitigate the effects of delay propagation.
The research highlights the need for comprehensive strategies that account for the interconnected nature of
airport operations, facilitating better planning and coordination among various stakeholders involved in air
traffic management.

4.5 ATFM Delay

Air Traffic Flow Management (ATFM) is an essential component of the global aviation infrastructure, tasked
with ensuring the efficient, safe, and orderly movement of aircraft throughout the airspace. Due to increasing
congestion and the need for more coordinated air traffic management, the International Civil Aviation Organiza-
tion (ICAO) proposed a centralized ATFM system to Eurocontrol in 1988. This proposal led to the development
of the Central Flow Management Unit (CFMU), designed to harmonize and optimize air traffic flows across
Europe’s complex airspace structures [35].
The CFMU was officially established in divisions of Western and Eastern Central Executive Units in 1989 and
reached full operational capability by 1996. This centralization of pre-tactical and tactical functions within the
CFMU significantly advanced European air traffic management, enhancing coordination among air navigation
service providers (Air Traffic Service Provider (ANSP)s) and other stakeholders.
The CFMU incorporates several critical systems to effectively perform its functions:

• Initial Flight Plan Processing System: This system processes all flight plans to operate within
controlled airspace, ensuring compliance with air traffic regulations and feasibility within current traffic
and airspace constraints.

• Tactical Capacity Planning Tool (Tactical Load Factor Calculation and Distribution System
(TACT)): The TACT is instrumental in compiling data for pre-tactical (two days prior to operation) and
tactical (day of operation) planning. It considers demand, capacity, and ATFM regulations to generate
optimized departure slots, minimizing delays and maximizing airspace utilization.
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• Environmental Database: This database stores permanent data, including routes, geographical data,
airports, and ATC centers. It supports the CFMU’s decision-making processes by providing accurate and
up-to-date information.

• Archives System: This system retains all operational data, enabling continuous improvement of ATFM
operations through historical analysis and strategic planning.

These integrated systems ensure that ATFM effectively manages the complex dynamics of air traffic, playing a
pivotal role in maintaining efficient and safe airspace operations throughout Europe [35, 27].
EUROCONTROL [13] lists the most common reasons for ATFM delay as seen in Figure 4.4. From this graph,
it can be seen that capacity issues are the major factor leading to regulations.

Figure 4.4: Reasons for ATFM delays within Europe in 2022. (EUROCONTROL [13])

An illustrative example of ATFM delay dynamics is depicted in Figure 4.5. The diagram highlights the temporal
distribution of airport capacity versus demand based on flight plan data. A notable peak occurs around 5:40,
when the demand surpasses the available capacity, primarily due to airlines implementing schedule buffers to
accommodate potential delays or operational inefficiencies. This proactive scheduling often leads to a temporary
overload of the system.
Conversely, beginning at 6:40, a noticeable decline in scheduled demand falls below the established capacity
thresholds. This reduction in demand presents an opportunity for ATFM regulations to redistribute or resched-
ule the earlier congested flights, thus smoothing out the spikes in demand and optimizing the use of airport and
airspace resources throughout the operational day.
Such ATFM interventions, while seemingly causing delays, are strategically implemented to enhance overall
traffic flow and resource utilization. Although these adjustments result in apparent delays, they are crucial
for maintaining system-wide efficiency and safety. Interestingly, EUROCONTROL [12] reported that in 2018,
approximately 40% of ATFM delays ranging from 5 to 15 minutes were effectively absorbed by the airlines
themselves. This absorption often involves slight modifications to flight operations that do not significantly
impact the overall travel schedule, thus mitigating the perceived inconvenience to passengers.
These findings underscore the complex interplay between scheduled flight plans, actual operational demand, and
ATFM regulations. By analyzing such data, stakeholders can better understand how strategic delay management
can prevent systemic overloads and improve the punctuality and reliability of air travel [12].
Although ATFM regulations seem like a definite cause for delay, Delgado and Prats [8] focusses on managing
ATFM delays through cruise speed reduction, attempting to enhance the efficiency of delay recovery without
increasing fuel consumption. This is possible because ATFM delays often result in unnecessary ground holding
if the weather conditions or other circumstances change over time. By reducing the cruise speed the delay can be
split between ground and airborne delay. A simulation has shown a linear relationship between the cancellation
time and the delay recovery, indicating a positive result.
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Figure 4.5: Illustration of Demand-Capacity balancing (EUROCONTROL [10])

Departure airport

According to EUROCONTROL [12], the Network Manager Operations Centre (NMOC) acts whenever too
many aircraft in the air at the same time at the same place can lead to an unsafe situation. To prevent this
from happening, a flight can be ’regulated’, by issuing a Calculated Take Off Time (CTOT), or ’slot’. All
aircraft try to depart as soon as the turnaround process is finished. However, in the case of a CTOT, the
aircraft can only depart between 5 minutes before and 10 minutes after the CTOT. The aircraft is required
to be ready for departure, located at the runway during this window. The reason for an ATFM slot can vary
between ATFM regulation at the destination airport, in an en-route sector, or at the departure airport, but the
result will always be the same.

Airborne

ATFM regulations rarely occur airborne, however, an increasing amount of research is being done on reducing
the impact of ATFM regulation while airborne. Rosenow et al. [41] states that airlines increase the cruising
speed to compensate for ground delay. However, increasing the cruising speed will increase fuel consumption
and thus cost and climate impact. The research finds that increasing the cruising speed can be an effective
strategy for reducing reactionary delay costs under certain conditions. The benefit of using this strategy varies
with the operational cost scenario and the amount of delay.

Arrival airport

The purpose of ATFM regulations is to prevent regulations from happening during the final stages of the flight.
So generally no ATFM regulations happen close to the arrival airport. However, the arrival airport is often
the cause of the regulation. According to EUROCONTROL [12] the number of delayed departures exceeds the
number of delayed arrivals, and this gap is increasing every year. In 2018, 48.4% of flights had a delay of ≥ 5
minutes, however only 42.8% had such a delay during arrival.

4.6 Turn around times at airports

In the event that there are no restricting measures from outside the aircraft, such as the before-mentioned
causes for delay, the aircraft itself has to be ready for departure. Asadi et al. [2] state that the target time of
an aircraft turnaround is of major importance for the tactical control of the Air Traffic Management (ATM)
process. Moreover, the turnaround time is subject to many random factors, such as passenger behaviour,
resource availability and short-notice maintenance. The paper proposes a mathematical optimization model for
the turnaround time, taking into account the many uncertainties. The process, visualized in Figure 4.6, shows
the 12 standard processes which are split up into up to 150 sub-tasks that involve up to 30 different actors,
depending on the characteristics of the airport and airline.
The study by Fricke and Schultz [16] provides an in-depth analysis of the turnaround process, focusing on the
identification of technical and procedural processes that hinder operational efficiency. These processes include
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Figure 4.6: Schematic of a standard turnaround process sequence. (Asadi et al. [2]
)

passenger boarding and deboarding, fueling, cargo handling, cleaning, and servicing. One of the study’s key
findings is that the critical path, which includes boarding, deboarding, fueling, and cargo handling, often suffers
from variability due to several technical deficiencies. These deficiencies are mainly associated with the aircraft’s
design and the interfaces used for ground handling operations.
Fricke and Schultz [16] employed a comprehensive field study across different airport types and aircraft models
to collect data on turnaround operations. This data served as the basis for statistical modeling and Monte Carlo
simulations, aimed at quantifying the variability in process times and identifying potential improvements. The
analysis revealed that specific design features of the aircraft body and ground handling interfaces significantly
contribute to the unpredictability and inefficiency of turnaround operations. By addressing these technical defi-
ciencies, the study suggests that it is possible to achieve a more reliable and reduced turnaround time, aligning
with Single European Sky Aviation Research (SESAR)’s performance targets for the 2020 Single European Sky
initiative SESAR Joint Undertaking [43].
A novel solution to these challenges is the Deep Turnaround system, a state-of-the-art application of computer
vision and AI technology. Deep Turnaround enables swift and low-maintenance optimization of turnaround
processes through real-time data generation and analysis. This system captures continuous imagery at each
stand, processed by an AI model to accurately track and predict turnaround events. (Amsterdam Airport
Schiphol [1]) This innovative approach ensures:

1. Rapid Implementation: Utilizing a singular Artificial Intelligence (AI) model across airports allows
for immediate performance at new stands and drastically shortens the adaptation period, ensuring quick
value delivery.

2. Dynamic Optimization: Continuous performance assessment and data-centric AI adjustments lead to
swift optimization, enhancing data accuracy and operational efficiency.

This technological advancement offers numerous benefits, such as improved on-time performance, optimized
stand utilization, accurate Target Off-Block Time (TOBT) setting, and enhanced collaboration between airport
and sector partners. Moreover, it contributes to sustainability by streamlining processes to reduce unnecessary
engine running times, thereby lowering carbon emissions.
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Chapter 5

Forecasting Methods

Accurate forecasting in Air Traffic Management (ATM) is crucial for enhancing operational efficiency and
reducing delays, particularly as air travel continues to grow in volume and complexity. This chapter explores a
variety of forecasting methods that address the challenges of predicting aircraft departure times from outstations,
integrating mathematical models and Machine Learning (ML) techniques to predict and manage the dynamic
nature of air traffic systems effectively.
Forecasting the departure times of aircraft involves large amounts of data and considering a variety of variables
that can affect timing, from weather conditions and air traffic congestion to mechanical issues and operational
inefficiencies. Effective forecasting methods can significantly mitigate delays, optimize the utilization of airspace
and airport resources, and improve overall travel efficiency and passenger satisfaction.
The methodologies discussed not only aim to forecast delays more accurately but also seek to provide strategic
insights that enable air traffic controllers and airport operators to make more informed decisions, potentially
transforming the landscape of ATM through technology and innovation.
The chapter starts by working out the methods that used to be the cornerstones of demand forecasting, stochastic
methods in Section 5.1, Poisson distributions in Section 5.2 and Time Series in Section 5.3. Subsequent sections
focus on the state of the art methods that are machine learning in Section 5.4. A more detailed description of
two techniques is given, first Random Forest in Section 5.5, followed by an extensive exploration of Machine
learning models in Section 5.6.

5.1 Stochastics

Stochastic modelling is one of the methods widely applied to prediction in air traffic operations. The application
of stochastic methods is particularly suitable for addressing the variability and unpredictability associated with
factors such as weather conditions, airspace congestion, and operational disruptions, which can significantly
impact departure times.
In the extensive literature review of Shone et al. [45], stochastic models, are described as very well-suited
for predicting departure times. These models can incorporate a wide range of probabilistic inputs, including
historical data on flight delays, patterns of demand fluctuation, and unpredictable events like adverse weather
or technical issues. By analyzing these factors by probability and uncertainty, stochastic models can provide
more accurate and reliable departure time forecasts compared to deterministic models, which might overlook
or inadequately represent the variability in air traffic systems.
Currently, stochastic modelling is used in departure time forecasting, with varying degrees of implementation
across different airports and air traffic control systems. Advanced stochastic models, including queueing theory
models and stochastic optimization algorithms, are employed to optimize the scheduling of flight departures,
aiming to minimize delays and improve the efficiency of airport operations. These models help in developing
dynamic scheduling systems that can adapt to real-time information and changes in the operational environment,
thereby enhancing the predictability and reliability.
Furthermore, the integration of stochastic modelling with Decision Support System (DST)s for Air Traffic
Controllers (ATCos) and Flow Management Position Controler (FMPC)s is increasingly becoming a focus of
research and development efforts in the aviation industry. These tools aim to provide actionable insights based
on probabilistic forecasts, allowing for more informed decision-making under uncertainty.
Stochastic models are not only suitable for departure time forecasting but are also actively used in current
ATM practices. Their ability to effectively handle the complexity and uncertainty of aviation operations makes
them invaluable for improving the accuracy of departure forecasts, optimizing flight schedules, and ultimately
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enhancing the overall efficiency and reliability of air traffic systems.

However, in recent years, stochastic modelling has shifted away. This evolution in ATM has been driven by the
need to address increasingly complex and dynamic systems that characterize modern air traffic environments.
Advances in computational technologies and analytical methods have introduced more scalable, accurate, and
real-time capable solutions, essential for today’s complex air traffic operations. Moreover, the integration
with newer automation and decision support technologies requires a shift towards more adaptable and robust
forecasting methods that can interact with these systems. While stochastic models have provided a foundational
approach, the state-of-the-art in ATM forecasting has advanced to meet the growing demands for precision,
efficiency, and real-time responsiveness, thereby enhancing overall system reliability and safety.

5.2 Poisson distributions

The Poisson distribution is another method frequently used due to its simplicity. Brooker [4] states that arrivals
are slightly less random than Poisson predictions. Therefore the predictions can be used as a reasonable first
approximation.
The Poisson distribution estimates the probability of a certain number of delays occurring within a specific
timeframe. However, the dynamic and interconnected environment of airport operations often violates the
Poisson assumptions. Delays are not always independent; they can be highly dependent on preceding events
and vary with daily traffic patterns. The model also overlooks important variables such as weather conditions,
air traffic control decisions, and the cascading effects of previous delays, simplifying the complex reality of
airport operations.
In contrast, ML models offer a more robust and adaptive approach, as found by Rebollo and Balakrishnan [38].
They excel in handling the complex, non-linear relationships typical in airport operations by integrating diverse
datasets, including operational constraints, historical delay data, and real-time conditions.

5.3 Time series

Where traditional delay forecasting methods often focus on isolated predictors without fully accounting for
the systemic impacts within the airport network, time series methods offer a framework for incorporating such
complexities to enhance prediction accuracy. The study by Güvercin et al. [20] introduces an approach termed
Clustered Airport Modeling (CAM), which integrates network-based information of airports into time series
models. This method aims to leverage the structural features of airport networks to improve the accuracy of
delay predictions.
The CAM approach constructs a representative time series model for clusters of airports that exhibit similar
characteristics in terms of delay patterns and network centrality metrics, Betweenness Centrality. By clustering
airports, the model effectively handles outliers and reduces noise, pooling data from airports with similar
operational dynamics.
This methodology highlights the role of the network structure, where each airport is considered a node, and
flights between them are the connecting edges. The significance of an airport within this network is quantified
using graph-based metrics like hub scores and Betweenness Centrality. Experiments have shown that incorpo-
rating network topology and clustering airports based on their delay patterns and connectivity substantially
enhances prediction accuracy compared to models that treat each airport independently (Wei et al. [52]).
Future directions could involve exploring the dynamic aspects of airport networks by incorporating real-time
data and evolving network structures. Moreover, integrating more detailed data, such as specific flight paths and
airline operations, could further enhance the granularity and accuracy of delay forecasts. Despite the advance-
ments in stochastic and Poisson distribution methods, machine learning models have consistently demonstrated
superior performance in predicting complex, nonlinear patterns typical in modern air traffic systems (Wei et al.
[52]).

5.4 Machine learning techniques

ML algorithms can discover patterns and dependencies in the data that traditional models may miss, and they
continuously improve as they learn from new data, adapting to changes in airport operations.
Moreover, ML models can process and utilize large volumes of data from various sources, enhancing the accuracy
of delay predictions. This comprehensive data utilization allows these models to dynamically adjust to the ever-
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changing environment of airports, providing predictions that are more accurate and reflective of real-world
conditions.
As air traffic systems become increasingly complex, the need for more advanced forecasting models becomes
imperative. ML techniques have emerged as powerful tools in predicting and managing the dynamic and
multifaceted nature of air traffic, particularly in forecasting aircraft departure times. This section explores
various machine learning methods, each offering unique approaches and advantages in handling the diverse and
often non-linear patterns observed in air traffic data. The most promising techniques are given, but first, a
more shallow overview of machine learning techniques is given in Figure 5.1, followed by a brief description.

Figure 5.1: Overview of various machine learning techniques (Swana and Doorsamy [49])

Supervised learning is the task within machine learning where the objective is to learn a function that maps
input data to corresponding outputs using sample input-output pairs. It relies on labelled training data and a
set of training examples to deduce this function. Supervised learning is used when specific objectives need to
be achieved from a given set of inputs, thus adapting a task-oriented approach. The primary supervised tasks
include classification, which involves categorizing data and regression, which entails fitting the data. However,
deep learning and neural networks also fit under supervised learning.

Semi-supervised learning merges supervised and unsupervised methods by utilizing both labeled and unlabeled
data, making it ideal for scenarios where labeled data is limited but unlabeled data is plentiful. It aims to
surpass the predictive performance achievable with solely labeled data, and is applicable in areas like machine
translation, fraud detection, and text classification. Unsupervised learning, on the other hand, focuses on
analyzing unlabeled datasets to discover trends and structures, useful for tasks like clustering, density estimation,
and dimensionality reduction. Reinforcement learning involves training software agents to make decisions that
maximize rewards or minimize risks within a given environment, useful in robotics, autonomous driving, and
supply chain logistics, though less suited for simpler tasks like departure time predictions. Together, these
learning paradigms address a wide range of complex and varied data-driven challenges.
These methods are widely known and applicable. However, the forecasting of aircraft departure times is a
complex problem influenced by a variety of factors, most of which are described in Chapter 4. Traditional
forecasting methods have relied heavily on statistical analysis and historical data patterns. However, with
the rise of ML, there has been a significant shift towards more dynamic and predictive models capable of
accommodating the nonlinearities and variabilitiesr in air traffic systems.
ML offers a transformative approach to predicting aircraft departure times by learning from historical data and
identifying patterns that traditional methods might overlook. The application of ML models not only enhances
the accuracy of predictions but also contributes to more efficient ATM and reduced delays, thereby improving
overall airport operational efficiency. Table 5.1 gives an overview of related literature, found on the usage of
ML methods to predict a variety of outcomes, such as individual and aggregate arrival and departure delay and
airspace complexity. The papers were selected to give a broad view of the problem, and each paper highlights
different aspects of the intricacies of departure delay prediction for a network of airports.
The factors considered in these studies are categorized into three main types:

• Extrinsic factors (E): These include external influences such as weather conditions, air traffic congestion,
and regulatory constraints that significantly impact flight operations.

• Spatial factors (S): These factors involve geographical and infrastructural elements such as airport
layout, location, distance between gates, and the routes connecting different airports, which are crucial in
determining delay propagation.
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Table 5.1: Comparison of techniques used in arrival delay, departure delay and airspace complexity prediction
studies and their results.

Authors Factors Model Details

E S T S Description Prediction Horizon Accuracy

Gopalakrishnan
and Balakrishnan
[17], 2017

✓ ✓ ✓ RNN Aggregate arrival
delay

2-hour Mean error of 4.7
min

Guo et al. [18], 2020 ✓ ✓ ✓ ✓ GNN Departure delays > 120 min 90.4%
Qu et al. [37], 2021 ✓ CNN Departure delay None given 93.19% classifica-

tion
Guo et al. [19], 2022 ✓ ✓ ✓ RF Departure delay 3-hour 8.73 min MAE,

17.08 min RMSE
Cai et al. [5], 2022 ✓ ✓ GNN/CNN Arrival delay 3-hour ±6 min error
Zhou et al. [55],
2022

✓ LSTM Arrival delay No horizon 0.42 MAE, 6.07
MAPE

Li et al. [28], 2024 ✓ ✓ GNN Airspace complex-
ity

2-hour 83.10%

Li et al. [29], 2024 ✓ ✓ CNN-LSTM-RF Classified delay None given 92.39%

• Temporal factors (T): This category encompasses time-related variables such as time of day, seasonal
variations, and day of the week, which influence flight schedules and congestion patterns.

• Systemic Factors (S): This category includes interactions and dependencies within the air traffic network
that lead to knock-on delays. These are cascading effects that stem from disruptions in the schedule,
impacting operations and are influenced by the connectivity of flight operations, where delays propagate
through the network.

The following methods are considered:

• RNN: Recurrent Neural Network

• GNN: Graph Neural Network

• CNN: Convolutional Neural Network

• LSTM: Long Short-Term Memory

• RF: Random Forest

Table 5.1 illustrates the varied approaches and results in recent research, highlighting the effectiveness of inte-
grating advanced neural network models for predicting flight delays across different time horizons and conditions.
All papers will be described below.

5.5 Random Forest

Random Forest (RF) is an ensemble machine learning technique highly applicable for forecasting flight departure
times or delays. It constructs numerous decision trees during training and outputs the mode (for classification)
or the mean prediction (for regression) across all trees. This methodology is suitable for handling the complex,
non-linear interdependencies characteristic of factors influencing flight schedules, such as weather conditions
and air traffic congestion. Currently, the DST employs a RF as basis machine learning model.
The strength of Random Forest in flight departure forecasting lies in its ability to mitigate overfitting through its
ensemble approach, making it exceptionally robust for variable patterns seen in flight schedules. It ranks input
features based on their importance, providing valuable insights into the primary factors affecting departure
times or delays. Additionally, its capability to process both categorical and numerical data types ensures
comprehensive analysis utilizing diverse datasets related to flight operations.
Utilizing Random Forest involves training on bootstrapped samples of historical flight data, where each tree
in the forest predicts the departure time or delay. The aggregate of these predictions forms the final forecast,
offering a balance between accuracy and computational efficiency. Despite being computationally demanding
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and less interpretable than some models, Random Forest’s reliability and predictive power render it a preferred
choice for optimizing airline operations and enhancing passenger experience.
In addressing the challenges associated with predicting flight departure delays, Guo et al. [19] propose a hybrid
method leveraging Random Forest Regression and Maximal Information Coefficient (RF-MIC). This approach
was selected for its superior ability to handle the complexity and non-linearity inherent in flight delay data. The
Maximal Information Coefficient (MIC), on the other hand, is employed to quantify the strength of linear or
non-linear associations between two variables. This metric is crucial for identifying and including only the most
relevant features in the model, thereby enhancing the model’s predictive accuracy. MIC excels in discovering
intricate patterns within the data that might not be apparent through traditional correlation coefficients, making
it particularly suited for the complex nature of flight delay factors which can range from weather conditions
to air traffic control constraints. The implementation of this method involved an innovative feature selection
process, utilizing a roulette method and prohibitive list based on information consistency, which ensured that
the model was both accurate and computationally efficient. Guo et al. [19] demonstrate the effectiveness of the
RF-MIC model through a numerical study using flight data from Beijing Capital International Airport. The
model showcased superior performance in predicting flight departure delays when compared to conventional
models such as linear regression, k-nearest neighbours, and standard Random Forest Regression. This enhanced
performance is attributed to the model’s ability to precisely identify and incorporate the most predictive features
for flight delays, facilitated by the integration of RF and MIC. The application of the RF-MIC method represents
a significant advancement in the predictive modelling of flight departure delays, offering a robust and efficient
tool for managing the complexities of aviation operations and enhancing passenger experience through more
accurate and reliable delay predictions.

5.6 Artificial neural networks

The Artificial Neural Network (ANN) forms the backbone of modern machine learning and artificial intelligence
applications. Inspired by the biological neural networks in the human brain, ANNs are composed of intercon-
nected units or nodes, mimicking neurons, that work together to process and interpret complex data inputs.
Each neural network consists of three critical components, node character, network topology and learning rules.
The character of a node defines the manner in which it processes signals, encompassing aspects like the number
of inputs and outputs linked to the node, the weights assigned to each input and output, and the activation
function it employs. The organization and connections of nodes are dictated by the network topology. The
methods by which weights are initially set and subsequently modified are established by the learning rules. Zou
et al. [56]

Node Character

At the heart of an ANN lies the node, or artificial neuron, a fundamental unit designed to mimic the function
of biological neurons in the human brain. Each node in an ANN processes signals by receiving inputs through
connections that carry specific weights, analogous to the synaptic strength in biological neurons. When the
cumulative weighted input surpasses a certain threshold, the node activates, processing the signal through a
transfer function and then transmitting it to subsequent nodes. This mechanism is encapsulated in a mathe-
matical model, incorporating elements such as input weights, transfer functions, and threshold values. Transfer
functions, especially non-linear ones like the sigmoid function, play a crucial role in enabling the network to
tackle complex, non-linearly separable problems.

Network topology

The structure of an ANN is defined by its network topology, which outlines how nodes are arranged and
interconnected. Nodes are typically organized into layers, including input, hidden, and output layers, with the
possibility of multiple hidden layers. The topology encompasses the number of nodes in each layer, the layering
of the network, and the pathways for signal transmission between nodes. This architecture can take various
forms, such as feedforward networks, where signals move in one direction, and feedback networks, characterized
by dynamic connections that allow for a series of outputs from a single input.

Learning rules

The adaptability of an ANN comes from its ability to learn from data. This learning process involves adjusting
the weights of connections between nodes to minimize the difference between the actual output and the desired
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Figure 5.2: General topology of an ANN (Zou et al. [56])

output. Learning in ANNs can be categorized into supervised and unsupervised methods. Supervised learning
relies on a predefined set of input-output pairs, adjusting weights to reduce output error. The effectiveness of
learning is contingent upon the choice of learning rules, such as error correction methods for supervised learning
and nearest neighbour approaches for classification tasks in unsupervised learning. These learning mechanisms
enable ANNs to refine their performance over time, enhancing their ability to generalize from training data to
new, unseen inputs.

As Artificial Intelligence (AI) is constantly evolving, various types of ANNs have been developed, each tailored
to handle different data types and learning tasks more efficiently. Below, we introduce some of the primary
types of ANNs, the Convolutional Neural Network (CNN), Graph Neural Network (GNN) and Recurrent Neural
Network (RNN).

5.6.1 Graph neural network
GNNs extend the capabilities of ANNs to data that is represented as graphs. This is particularly useful in
domains where the data is naturally graph-structured, such as a network consisting of multiple airports or by
displaying a set of flights as a graph. GNNs can capture the dependencies not only in the feature space but also
in the structure of the data itself. Ma et al. [30] states that GNNs enable better modelling of spatial-temporal
features in varying horizons. The core concept of a GNN is visualized in Figure 5.3

Figure 5.3: Illustration of constructing the multiscale historical delay sequences on graph snapshots (Mehta
[31])

GNNs can leverage the graph structure of air traffic networks, enabling the model to understand and utilize the
spatial relationships and dependencies between airports. For example, delays at a major hub could propagate
to other airports connected to it. By modelling these connections, GNNs can capture the cascading effects of
delays more accurately than traditional models that treat each flight or airport independently.
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Air traffic is influenced by dynamic factors such as weather conditions, congestion, and operational constraints.
GNNs can integrate temporal and dynamic information into the graph model, allowing for the prediction of
delays based on current and historical data. This dynamic modelling capability enables GNNs to provide more
accurate and timely predictions.
The performance of an airport and its susceptibility to delays can be influenced by various factors, including
its connectivity within the network, the volume of traffic it handles, and external conditions affecting it. GNNs
can use node-level, edge-level, and global graph attributes to encode such contextual information, enriching the
model’s understanding and predictive capability.
By using GNNs, it’s possible to make predictions not just for individual flights or airports but across the
entire network. Moreover, also a set of flights can be displayed as a graph. This view allows for a better
assessment of delay probabilities and their potential impact on the network, facilitating better decision-making
and management by airlines and airport authorities [42].
Cai et al. [5] investigate flight delay prediction by adopting a deep learning approach that leverages time-
evolving graphs. Recognizing the limitations of previous studies that mainly focus on single-airport scenarios
and overlook the dynamic spatial interactions within airport networks, their study proposes a novel method-
ology to model these intricate dynamics. Using a Multiscale Spatial-Temporal Adaptive Graph Convolutional
Neural Network (MSTAGCN), the research addresses the challenge of predicting flight delays from a network
perspective, encapsulating multiple airports within a unified framework. The MSTAGCN is distinctive for its
ability to process both the time-series data of flight delays and the evolving structure of the airport network
through graph snapshots, enabling the model to capture the temporal and spatial dependencies inherent in
flight operations. The architecture of MSTAGCN consists of two multiscale spatial-temporal adaptive graph
convolutional layers followed by an output layer, which collectively aim to forecast flight delays with heightened
accuracy. Especially for a long horizon of up to three hours, the model shows great promise. However, it has
to be noted that this includes aircraft that are already airborne, which significantly reduces the uncertainty.

In an approach with similar complexity, but different goal, Li et al. [28] propose a Multimodal Adaptive Spatio-
Temporal Graph Neural Network for Airspace Complexity Prediction (MAST-GNN) that predicts airspace
complexity up to a 120-minute horizon. The MAST-GNN framework operates by first creating a network
of airspace sectors represented as nodes in a graph. It processes spatial and temporal data through its two
main components. Using Multimodal Adaptive Graph Convolution (MAGCN), spatial data is processed by
adapting to different spatial contexts dynamically, using traffic flow and geographic characteristics. Temporal
Convolution Network with Attention (TCN-Att) addresses the temporal aspect by employing a self-attention
mechanism that adjusts to different temporal scales, crucial for predicting changes in airspace complexity over
time. MAST-GNN significantly outperforms traditional methods and contemporary graph-based models across
various prediction horizons. Specifically, it shows substantial improvements particularly in longer-term predic-
tions (60 to 120 minutes). The approach of MAST-GNN to integrate multimodal data and its capability to
adapt to spatial and temporal variations makes it very suitable for predicting airspace complexity.

When focussing on departure delays, Guo et al. [18] give an interesting take at utilizing the strength of a GNN
to predict departure delay at long (>120 minutes) horizon. More specifically, using a Spatio-temporal Graph
Dual-Attention Neural Network (SGDAN). The model is designed by first modelling the complex air traffic as
graph sequences. Each graph represents flights and their relationships at different times, relationships such as
the same departure or arrival airport, or different flights using the same aircraft. Every node is a flight, and
the edges represent the relationship, as can be seen in Figure 5.4. Using a dual-attention mechanism, both
heterogeneous graph-level attention and sequence level-attention are integrated. The dual-attention mechanism
focuses on the spatial aspects by learning the impact of neighbouring flights (those sharing the same departure
or arrival airport) on the target flight’s delay. It uses multi-head attention mechanisms to weigh the influence
of these neighbouring flights differently. Sequence-level attention focuses on the temporal aspects by evaluating
how previous flights affect the current flight in the sequence, particularly considering the shared aircraft. This
helps to capture the propagation of delays through consecutive flights.

5.6.2 Convolutional neural network
CNN is a type of ANN that is pivotal in the field of deep learning, particularly for tasks involving image
and video processing, as well as for some areas of natural language processing and time-series analysis. The
architecture of CNNs is inspired by the organization of the animal visual cortex and is particularly adept at
recognizing patterns leading to the identification of objects within images. These networks utilize layers of
convolutional filters to process data in a hierarchical manner; lower layers might identify edges and textures,
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Figure 5.4: Illustration of constructing the multiscale historical delay sequences on graph snapshots (Guo et al.
[18])

while deeper layers can recognize more complex structures like faces or objects. This hierarchy allows CNNs to
abstract and understand the spatial hierarchies in data effectively.
CNNs uses pooling and activation functions like ReLU to introduce non-linearity and invariance to minor changes
in the input data, improving their predictive capabilities. The architecture often concludes with fully connected
layers that compile the features extracted by convolutional layers to make final predictions or classifications.
One of the key advantages of CNNs is their efficiency in processing data due to weight sharing and sparsity
of connections, reducing the number of parameters compared to fully connected networks. This efficiency not
only speeds up the training process but also reduces the computational cost, making it easier to train complex
models. Furthermore, CNNs have been at the forefront of deep learning advancements, pushing the boundaries
in fields like autonomous vehicles, medical image analysis, and face recognition, showcasing their adaptability
and effectiveness in extracting meaningful information from complex datasets. Typically, a CNN has these
layers IBM [24] :

Convolutional layer

The convolutional layer, fundamental to CNNs, processes input images (represented in a 3D matrix for RGB
images) using filters (or kernels) to produce feature maps. This involves convolving the filter across the image’s
width, height, and depth, computing dot products to detect specific features. Key parameters affecting the
output include the number of filters (determining output depth), stride (the filter’s movement step size), and
padding (managing border effects). Training adjusts filter weights, while hyperparameters like filter number,
stride, and padding type are preset. Post-convolution, a non-linearity (ReLU) is applied to the feature map.

Pooling layer

Pooling layers, also known as downsampling, simplify the input’s dimensionality without retaining every detail,
primarily through max pooling, which selects the highest pixel value, and average pooling, which calculates
the mean value within a specific area. This process, distinct from convolutional layers due to the absence of
weighted filters, effectively minimizes computational complexity and the model’s susceptibility to overfitting by
summarizing the most significant features.

Fully-connected layer

The fully-connected layer links every node from the previous layer to each of its own nodes, enabling the network
to classify images based on extracted features and their significance. Unlike convolutional and pooling layers
that commonly use the ReLU function, the fully-connected layer typically employs a softmax activation function.
This function assists in outputting probabilities for each class, facilitating the precise classification of inputs.
A notable example of a study utilizing a CNN is Qu et al. [37] who present a method to predict flight delays
by using a combination of flight data and meteorological information. Two CNN models are proposed: Dual-
channel Convolutional Neural Network (DCNN) and Squeeze-and-Excitation Densely Connected Convolutional
Network (SE-DenseNet). The method involves preprocessing data to merge relevant flight and weather data,
then using the DCNN and SE-DenseNet models to automatically extract features from this fused dataset. The
DCNN model integrates features using dual channels to enhance feature matrix transmission and network depth
patency, while the SE-DenseNet model incorporates the Squeeze-and-Excitation (SE) module to recalibrate
feature importance dynamically. Comparing the CNN, DCNN and SE-DenseNet Experimental results show
that incorporating meteorological information improves prediction accuracy by about 1% compared to using
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Figure 5.5: Structure of the CNN model (Li et al. [29])

flight data alone, with SE-DenseNet achieving the highest accuracy of 93.19%. The study demonstrates that
deep learning methods, particularly when using large datasets that include weather information, can significantly
outperform traditional prediction models in accuracy and reliability for flight delay predictions.

5.6.3 Recurrent neural networks
RNNs are designed to recognize patterns in sequences of data, such as text or stock market fluctuations. Unlike
feedforward networks, RNNs have "memory" about previous inputs in their internal state, which influences
the network’s output. This makes them ideal for tasks where context or the sequential order of data points
is important. However, RNNs can struggle with long dependency sequences, which led to the development of
more advanced RNNs like the Long-Short Term Memory Cell (LSTM) and the Gated Recurrent Unit (GRU).

Long-Short Term Memory networks

A promising technique is the LSTM, which helps modelling sequential data. Pisa et al. [34] describes LSTM cells
as particularly useful for handling time-series data due to their unique architecture that allows them to remember
and utilize historical data points, making them a suitable choice for modelling the dynamic processes around
an airport where current output depends on both the present and past inputs. The LSTM cell accomplishes
this through a sophisticated system of gates which are also visualized in Figure 5.6:

Figure 5.6: Schematic of an LSTM cell. (Pisa et al. [34])

• Forget Gate (fg): This gate decides what information from the cell state should be discarded or retained.
It uses the current input and the output from the previous step to generate values between 0 and 1 through
a sigmoid layer, with 0 indicating that the information should be forgotten, and 1 indicating that it should
be retained and used to modify the hidden state.
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• Input Gate (ig): Similar to the forget gate, the input gate decides which of the current input information
should be used to update the cell state. It determines the relevance of the input information in the context
of the new cell state.

• Cell-State Gate (cg): This gate calculates the candidate values for the new cell state by considering the
previous output and the current input. It uses a hyperbolic tangent activation function, which outputs
values in the range of -1 to 1, to generate these candidate values. The new cell state is then determined
by combining the outputs of the forget gate, input gate, and the cell-state gate.

• Output Gate (og): The output gate decides what the next output should be based on the cell state and
the current input. This gate effectively determines the next cell output, which is modified according to
the cell state to produce the final output.

The most promising research predicting delays is the LSTM study by Li et al. [29]. This study introduces a two-
stage CNN-LSTM-RF model that integrates spatial and temporal data alongside extrinsic features for enhancing
flight delay predictions. This hybrid model utilizes the strengths of both CNN and LSTM architectures to
capture the complex spatial-temporal correlations that influence flight schedules, further complemented by
Random Forest for final delay predictions. The LSTM component plays a pivotal role in capturing temporal
dependencies inherent in aviation data, particularly from flight schedules and meteorological conditions: The
LSTM networks engage in weather pattern analysis by examining time-sequenced meteorological data leading
up to scheduled departures. This analysis helps the networks to comprehend historical weather impacts and
effectively predict potential delays caused by similar future conditions. Additionally, the LSTM utilizes its
capability to retain relevant historical data over extended periods, thereby extracting essential temporal patterns
that significantly influence delay predictions. In coordination with the LSTM, the CNN layers process spatial
information about airport congestion and delays. The CNN processes spatial features by mapping airports based
on geographical locations and analyzing congestion patterns, which serve as critical predictors of potential delays.
The integration of CNN and LSTM outputs enables a comprehensive analysis of how spatial and temporal factors
collectively impact flight delays. This spatial-temporal modelling approach combines current and past airport
conditions across the network, providing a holistic view of the factors influencing flight times. Furthermore, the
features from both CNN and LSTM frameworks are employed as inputs for a RF classifier. Known for its high
accuracy, the RF algorithm utilizes an ensemble of decision trees to predict flight delays, capitalizing on the
majority voting system to enhance predictive accuracy. The model has achieved an accuracy rate of 92.39%,
underscoring its effectiveness in synthesizing various contributing factors to flight delays.

Figure 5.7: The architecture of the CNN-LSTM-Random Forest. (Li et al. [29])
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While [29] provide the most promising LSTM research, more results are gained. Sun et al. [48] propose a LSTM
network for airport delays and a dynamic spatial-temporal graph attention network (DST-GAT) for network-
level predictions. The DST-GAT model, a key innovation, accurately models and predicts delays across airport
networks by considering the dynamic relationships between airports. The paper employs two LSTM layers as
part of their approach to predict delays at three different scopes: individual flights, airports, and the network of
airports. LSTM layers are particularly suitable for this task due to their ability to model temporal dependencies
and capture dynamics in time series data, which is inherent in flight delays.

GRU

A notable alternative to the complex LSTM, is a simplified version, the GRU. Zhou et al. [55] proposes a GRU
neural network to make departure time estimations. This is done using the flight information, airport, weather
and airline data. The model used, a GRU is a model based on the GRU. Unlike the LSTM, the GRU combines
the forget gate and input gate into a single update gate and mixes neurons and hidden states to reduce network
parameters and improve the training speed.
This LSTM-based structure allows for the detailed and nuanced modelling of time-dependent processes, such
as those found in Air Traffic Flow Management (ATFM), by capturing the temporal correlations inherent in
the measurement data. The LSTM’s ability to maintain and manipulate a memory of past observations over
long sequences makes it particularly well-suited for predicting the dynamics within complex systems where
historical data significantly influence current conditions. This shows good promise for prediction departure
times, however, no forecast horizon is given in the paper, so uncertainty about this method remains.
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Chapter 6

Data

The methods described in the previous chapter can only be as good as the provided data. All methods described
require extensive data on weather circumstances, Air Traffic Flow Management (ATFM) regulations, Airport
Collaborative Decision Making (A-CDM) data among others. As at this given instance, it is still largely
uncertain what data is available, this chapter will describe the data sources that are desired.
A key consideration is the desired horizon, as the reliability of data sources is heavily reliant on the amount
of time between the prediction and the actual event. For example, flight plans are updated starting from 3
hours before departure. The desired horizon for this research is 4 hours and therefore other data sources have
to be found. However, flight plan data of other flights can indicate knock-on delays or other effects, so will be
incorporated.

The first type of data that is described is B2B data in Section 6.1, followed by Weather data in Section 6.2.
The Chapter is concluded by the description of Automatic Dependent Surveillance-Broadcast (ADS-B) data in
section 6.3.

6.1 B2B Data

EUROCONTROL Network Manager (NM), the organisation that monitors the traffic flow for the entire ECAC
area, collects and distributes information between all Air Traffic Service Provider (ANSP)s, airlines, airports
and other stakeholders in the area. The B2B service is at the core of EUROCONTROL’s interoperability
strategy and is seen as instrumental in the Single European Sky Aviation Research (SESAR) development.
EUROCONTROL [15] gives the following categories of services:

Flight Services

Focused on the facilitation and management of flights within and heading towards the ECAC area, Flight
Services offer comprehensive data sharing capabilities that enhance interactions between airspace users and
ANSPs. This service enables users to initiate, file, and manage flight plans efficiently. Each flight plan undergoes
a thorough validation process and is continuously monitored in coordination with the relevant air traffic control
sectors. Additionally, the service incorporates tools for planning departures and arrivals, which are crucial
for airports engaged in A-CDM. Air Traffic Flow Capacity Management (ATFCM) slot information forms a
critical component of this service, allowing the network manager to effectively balance demand and capacity.
Moreover, Flight Services provides updates on the progression of airborne flights, including position reports,
status updates, and messages related to system activations. These updates are given in the form of Departure
Planning Information (DPI) and Flight Update Messages (FUM). Although these do not include a specific
Actual Take Off Time (ATOT) field, a combination of sources can be used to determine the ATOT.

Airspace Services

Airspace Services are dedicated to providing a structured and up-to-date view of operational airspace data,
crucial for the smooth functioning of air traffic management. This service includes access to Aeronautical In-
formation Publication (AIP) sourced data such as points, routes, aerodromes, and airspaces, tailored to meet
the operational requirements of the NM’s flight and flow systems. Not officially published as AIP data, this
NM-adapted information helps in strategic planning and execution. The service also covers ATFCM-related
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airspace data like restrictions, which encompass route availability documentation and profile tuning restrictions.
Additionally, electronic Airspace Management Information (e-AMI) is available, facilitating access to the Euro-
pean Airspace Use Plan/Updated Use Plan in compliant formats, further supporting airspace availability and
management.

Flow Services

Flow Services are integral to managing and optimizing the flow of air traffic within the network. This section
provides access to all relevant regulation information utilized within NM’s flow management systems. It encom-
passes services that allow for a detailed view of the Network Situation, including traffic, delays, causes of delays,
and current regulations. Traffic counts by various parameters such as aerodrome, aircraft operator, and airspace
are readily accessible. Additionally, this service supports the management of ATFCM’s daily operational plans,
which include capacity plans and sector configuration plans among others. Flow Services also facilitate scenario
management and offer simulation capabilities, allowing stakeholders to assess the impact of different ATFCM
measures effectively.

6.1.1 General Information Services
General Information Services serve as a gateway to a wide array of network operations information. These
services are vital for maintaining transparency and accessibility in air traffic management operations. Users can
access ATFM Information Messages (AIM), which publish general network operations information, and NM
B2B Info. B2B data ensures that stakeholders are well-informed and can retrieve necessary operational data
and documentation to support their activities within air traffic management.

6.2 Weather Data

The weather has an enormous effect on the capacities of airports. Although forecasts can be unreliable, ATFM
regulations can be made according to projections. Therefore, the 4 hour before departure forecast can effect the
departure time. Meteorological Aerodrome Reports (METAR) data provides routine observations of weather
conditions at airports, offering crucial insights that can significantly impact aircraft departure times. This data
is instrumental for machine learning models aimed at enhancing the predictability and efficiency of airport
operations. The reports are generated by airport weather stations and include detailed, timely observations on
a variety of weather conditions such as wind, visibility, precipitation, cloud cover, temperature, and barometric
pressure. These reports are typically issued once every hour, providing a snapshot of the weather conditions at
the time of the observation.
Key components of METAR data relevant to machine learning models include:

• Wind: Speed, direction, and gusts, which affect decisions on runway usage and can influence takeoff and
landing operations.

• Visibility: Measured in meters or miles, low visibility conditions can trigger air traffic flow restrictions.

• Weather Phenomena: Descriptions of current weather conditions such as rain, snow, fog, or thunder-
storms that might delay operations or require additional safety measures.

• Sky Condition: Information on cloud cover, including the type and altitude of clouds, which is crucial
for flight operations.

• Temperature and Dew Point: These factors influence aircraft performance and may impact de-icing
operations during cold weather.

• Pressure: Barometric pressure readings are essential for aircraft altimeter settings.

For all these components, predictions are made, up to a horizon till 18 hours in advance which makes it useful
for this thesis. In conclusion, METAR data is a vital component for machine learning models attempting to
predict aircraft departure times. Its detailed and timely observations allow for a nuanced understanding of how
weather affects airport operations, enhancing the predictive capabilities of these models and supporting more
effective decision-making processes.
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6.3 ADS-B data

ADS-B is a sophisticated surveillance technology that enables aircraft to broadcast their location and other
state information. This system, which is set to replace traditional secondary surveillance radar systems, is
increasingly used in aviation due to its significant benefits in terms of coverage and accuracy. ADS-B signals are
straightforward to intercept, which permits not only aircraft but also ground stations and private receivers to
process the data easily. As a result, ADS-B has become a cornerstone technology in modern Air Traffic Control
(ATC) systems. Its widespread adoption helps improve the security, reliability, and efficiency of airspace usage.
Several organizations leverage ADS-B data to enhance aviation services and research. One notable example is
OpenSky, which provides open access to real-world air traffic control data. This initiative supports numerous
applications in improving airspace security and operational efficiency by making detailed flight data available
to the public.
The data transmitted by ADS-B includes essential information such as:

• Aircraft identification code

• Surface position

• Airborne position

• Airborne velocities

• Operational status

While ADS-B data is not the primary data source in this research, it can play a role during the pre-departure
phase of flights. Accurate knowledge of an aircraft’s position while airborne within the horizon is necessary to
predict whether it will arrive at the departure airport on time.
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Chapter 7

Research gap

As identified in the previous chapter on forecasting methods in Air Traffic Management (ATM), effective predic-
tion of departure times and management of knock-on delays are critical for enhancing operational efficiency in
the aviation industry. However, despite significant advancements in forecasting methods, there are still notable
gaps that could be addressed to improve the precision and utility of these predictions, particularly regarding
the impact of weather conditions and the extension of the forecast horizon to four hours.

7.1 Extending Forecast Horizons

One of the primary challenges in current forecasting methodologies is the limitation of prediction horizons.
Most existing models, including those based on Machine Learning (ML) techniques, typically focus on short-
term forecasts—usually up to two hours. Extending the forecast horizon to four hours could significantly
enhance the ability of airport operators and airlines to make proactive adjustments, reducing the cascading
effects of delays and optimizing overall network efficiency. Longer forecast horizons would allow for better
strategic decisions, such as adjusting flight schedules in advance and optimizing Air Traffic Flow Management
(ATFM) to anticipate and mitigate potential disruptions.

7.2 Knock-On Delays

Another significant gap is the management and prediction of knock-on delays, which are secondary delays caused
by an earlier disruption in the network. Current models often treat flights and airports as independent entities,
without fully accounting for the interconnected nature of the aviation network. This oversight can lead to
underestimations of delay durations and impacts, particularly in hub airports where delays can ripple across
many subsequent flights.
An enhanced focus on knock-on delays would involve developing models that can dynamically interpret and pre-
dict the cascading effects of a delay throughout the network. This approach would require better understanding
and incorporation of network topologies, interdependencies between flights, and the specific characteristics of
hub versus spoke airports.

7.3 Weather Impacts at Different Airports

Weather conditions play a crucial role in the predictability and management of flight schedules. However, the
impact of weather can vary significantly between different airports due to their geographic and operational char-
acteristics. Research into the differential impacts of weather on various airports could lead to more customized
forecasting models. These models would take into account the unique weather patterns and their typical im-
pacts on specific airports, thereby improving the accuracy of delay predictions. Moreover, integrating real-time
weather data into forecasting models can dynamically adjust predictions as weather conditions change.
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Chapter 8

Research Objective

This research is driven by the central objective to enhance the accuracy and reliability of demand forecasting
used by the Decision Support System (DST) of Luchtverkeersleiding Nederland (LVNL). More specifically by
reducing uncertainty during the pre-departure phase (-3 to -4 hours) of flights inbound to Schiphol. The inves-
tigation focuses on machine learning techniques to achieve this goal. As a result, the objective of this research is:

To build a model that reduces departure time uncertainty for flights inbound Schiphol
at a 4-hour horizon.

8.1 Research question

The primary question guiding this research examines the impact and potential of machine learning to reduce
uncertainties in air traffic management at out-stations, specifically within a four-hour flight radius of Schiphol.
Therefore the research question is as follows:

To what extent can machine learning be applied to the pre-departure phase at a
horizon of four hours?

This can be segmented into three elements, demand forecasting, departure time forecasting and machine learning
methods. To further segment this, the following sub-questions are identified.

1. What data features contribute most to the departure time prediction accuracy of flights inbound Schiphol?

2. What are the uncertainties in air traffic at out-stations, located within a 4-hour flight radius within LVNL’s
operational framework, and how do these uncertainties impact the demand prediction?

3. Which input parameters are available pre-departure and various horizons up to 4 hours, and which features
are expected to contribute most to departure time trajectory prediction?

4. How can the results of the model be validated?

5. How does the developed model perform when employed by airports other than Schiphol?

8.2 Scope

The initial scope of this project is focused on predicting the departure times for all flights currently on the
ground and destined to depart from Schiphol within four hours. If achieving this objective becomes infeasible,
alternative scopes will be considered. These adjustments will be determined based on the availability of data
and the progress of the project. The potential alternative focuses include:

1. Concentrating on Specific Airports: Narrowing the prediction scope to specific airports may provide
more targeted insights and efficient resource utilization.

2. Altering the Prediction Horizon: Modifying the forecast horizon from the current four hours to a
different duration, which could be shorter or longer depending on data accuracy and completeness.
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3. Focusing on Specific Flights: Restricting the model to flights using Schiphol as a hub could enhance
predictability due to the higher consistency and availability of data, especially for knock-on effects.

These scope adjustments will allow for a more tailored and effective predictive model, capable of adapting to
the dynamics of available data and ongoing project insights.
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Chapter 9

Conclusion

In Air Traffic Management (ATM), the challenge of balancing demand and capacity is pivotal in ensuring
the safe and efficient transit of flights through controlled airspaces. Notably, Luchtverkeersleiding Nederland
(LVNL), the Dutch air navigation service provider, has employed a sophisticated decision support tool designed
to predict traffic load and facilitate the management of traffic flow by air traffic controller supervisors. While
this tool provides a relatively accurate forecast of traffic loads, its effectiveness is occasionally undermined by
significant forecast errors that can result in inefficient or even unnecessary traffic management decisions, such
as imposing delays on flights preemptively. This research seeks to advance the sector demand forecasting in
the tactical domain by leveraging machine learning technologies to enhance trajectory predictions. The core
research objective is: ’To build a model, that reduces departure time uncertainty for flights inbound Schiphol
at a 4-hour horizon’.

The exploration begins in Chapter 2 with an in-depth analysis of the existing demand forecasting methodologies
detailed in earlier chapters of this research. It is noted that these methodologies heavily depend on centralized
flight plan data, which inherently carries uncertainties particularly in regards to flight departure times. The
thesis critiques these traditional forecasting methods and argues for the adoption of more robust models that
can reduce reliance on uncertain and often inaccurate flight plan data.

Subsequently, in Chapter 3 both model-based and data-driven trajectory prediction methods are examined.
Through a comparative analysis, it is established that while model-based approaches are grounded in established
aircraft performance parameters, they often fall short in dynamically changing conditions where comprehensive
historical data and intent information are lacking. In contrast, data-driven approaches, particularly those em-
ploying advanced machine learning algorithms, demonstrate a higher capability in recognizing complex patterns
and adapting to new data, making them more suited for long-term predictive accuracy.

Moreover, Chapter 4 on the predictability of the Actual Take-Off Time (ATOT) delves deeply into the com-
plexities that influence ATOT and the broader implications for air traffic management systems globally. Key
factors such as operational inefficiencies, adverse weather conditions, and air traffic congestion are examined for
their impact on ATOT. The Chapter emphasizes the importance of understanding and mitigating the causes
of delays to improve ATOT predictability. Methodologies and technologies that are employed to enhance the
accuracy of forecasting ATOT are discussed, most importantly Airport Collaborative Decision Making.

Further, various machine forecasting methods that hold relevance to demand forecasting and trajectory pre-
diction within ATM systems. It delves into the functionalities and potential applications of convolutional and
graph neural networks, alongside recurrent neural network architectures. These models are evaluated for their
effectiveness in generating accurate trajectories and facilitating robust demand forecasts, essential for the proac-
tive management of air traffic.

Finally, a detailed examination of the data utilized in Chapter 6, comprising flight information messages from
Eurocontrol’s Network Manager and weather data from METAR, optionally extended by actual ADS-B trajec-
tories collected via OpenSky. This dataset supports the development and refinement of the proposed machine
learning models. This information is followed by the Research Gap in Chapter 7, and Research Objective in
Chapter 8 where the stage of the research is set.
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