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Abstract 
Accurate weather forecasts are crucial for minimizing delays at airports. Specifically low-visibility 
conditions can greatly impair airport operations, reducing capacities up to 67%. However, current 
Numerical Weather Models often struggle to accurately forecast low-visibility conditions. In this study, we 
develop and evaluate two types of classifying machine learning algorithms for forecasting visibility 
conditions. We introduced an independent, deterministic Random Forest Classifier for classifying pre-
defined classes. The model performed well at short timescales, but its performance quickly declined over 
the forecasting horizon, particularly for intermediate classes. Additionally, we developed a probabilistic 
Temporal Fusion Transformer, which we fitted with a custom Focal Loss function for the first time in 
visibility forecasting. We demonstrate the success of this approach in forecasting visibility, specifically for 
low horizontal visibility. The results highlight the potential of using Temporal Fusion Transformers for short-
scale, categorical visibility forecasts. 
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List of Abbreviations 
Table 1: List of abbreviations used throughout this thesis. 

  

Abbreviation Description 
AI Artificial Intelligence 
ATC Air Traffic Control 
AWS Automated Weather Sensor 
BS Brier Score 
BSS Brier Skill Score 
BZO Beperkt Zicht Omstandigheden 
CLB Cloud Base Height (ceiling) 
CSI Critical Success Index 
FAR False Alarm Ratio 
ILS Instrument Landing System 
KNMI Koninklijk Nederlands Meteorologisch Instituut (Royal Netherlands 

Meteorological Institute) 

LVNL Luchtverkeersleiding Nederland (Air Traffic Control the Netherlands) 
LVP Low Visibility Procedures 
ML Machine Learning 
NWM Numerical Weather Model 
NWP Numerical Weather Prediction 
POD Probability of Detection 
PWS Present Weather Sensor 
RF Random Forest 
RFC Random Forest Classifier 
RVR Runway Visual Range 
TFT Temporal Fusion Transformer 
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1 Introduction 
The weather substantially impacts daily life: people check the weather to plan what they will wear, when 
to be inside or outside, or when it is safe to travel. Extreme weather events can greatly influence safety, 
especially in transportation sectors such as road (Goodwin & Pisano, 2003; Westcott, 2007) and air traffic 
(De Villiers & Van Heerden, 2007; Keith & Leyton, 2007; Stolaki et al., 2009). An example of an extreme 
weather event is low visibility. Low visibility prevents people from noticing other vehicles or objects, often 
resulting in accidents in road, marine and air traffic (Wu et al., 2018; Bergot & Koracin, 2021). In aviation, 
extra measures are taken to ensure safety during low visibility conditions. These measures decrease an 
airport’s capacity, often leading to delays (Pejovic et al., 2009). Delays result in significant economic 
consequences as well as unnecessary CO2 emissions.  

In 2019, Amsterdam Airport Schiphol, the world’s number 11 largest airport, experienced one million 
minutes of delay. Each minute results in a cost of about €100 (LVNL, 2023) for either the airport or airlines. 
Many of these delays were caused by fog or heavy rain, which both greatly reduce visibility (Mullers, 2023). 
To reduce these delays, Air Traffic Control at Amsterdam Airport Schiphol, LVNL, developed a Decision 
Support Tool (DST) that combines meteorological forecasts with flight plans to forecast the airport’s 
capacity every 10 minutes for the coming four hours. LVNL divides low-visibility conditions into 6 
categories, each with a maximum airport capacity. Therefore, LVNL requires accurate forecasting of these 
visibility categories to predict the airport's capacity. Additionally, LVNL bases the airport’s capacity on 
visibility conditions at two key locations, requiring a separate visibility forecast for each. Currently, LVNL 
uses a visibility forecast based on a Numerical Weather Model, or NWM. 

Problem statement 

The main factor that determines visibility is fog, but NWM often perform poorly in forecasting fog (Bergot 
et al., 2007; van der Velde et al., 2010; Román-Cascón et al., 2012; Zhou et al., 2012; Steeneveld et al., 
2015; Herman & Schumacher, 2016; Izett et al., 2018; Martinet et al., 2020). This is partly caused by the 
fact that fog depends on many different variables and can develop through various processes. Moreover, 
fog often occurs on a small spatial and temporal scale (Tapiador et al., 2019). NWM often produce 
forecasts over a gridded domain with a spatial scale of several kilometers and temporal scales of hours, 
making it very difficult for NWM to accurately predict the location, time of onset and duration of fog with 
high detail (Steeneveld et al., 2015). This level of detail is essential to airport operations, as local or short-
lived fog can still cause major disruptions and delays (Huang & Chen, 2016). 

As a result of the reasons mentioned, this research focuses on the following problem statement:  

Current visibility forecasts produced by NWM are of insufficient quality for aviation, 
impeding timely prevention of delays, leading to unnecessary costs and emissions 

Scientific context 

Recent research has identified machine learning as a possible solution to this problem. Studies have 
shown that machine learning (ML) algorithms show promising results in forecasting visibility (Bartoková 
et al., 2015; Colabone et al., 2015; Guijo-Rubio et al., 2018; Miao et al., 2020; Bartok et al., 2022; Castillo-
Botón et al., 2022; Salcedo-Sanz et al., 2022). The major difference between ML algorithms and NWM is 



Vera Buis MSc Thesis Meteorology & Air Quality 

7 
 

that these models are trained to recognize historical patterns in atmospheric conditions rather than rely 
on physics and parameterizations. An ML algorithm could recognize the conditions related to fog 
formation without having to understand the physics of fog formation. Furthermore, NWM often produce 
forecasts on temporal and spatial scales too large to capture short-lived or local fog. Since ML algorithms 
rely on historical patterns, they are capable of producing forecasts at the same scale at which 
observations were recorded. ML algorithms thus exclude the need for high mathematical complexity, 
making them quicker, easier and cheaper to operate than NWM (Schultz et al., 2021) while still producing 
small-scale forecasts. 

Boneh et al. (2015), Durán-Rosal et al. (2018) and Miao et al. (2012) all successfully implemented ML 
methods on fog forecasts or nowcasts at different airports, the first and latter even being operational now. 
In these studies, ML algorithms were applied as a nowcasting algorithm or post-processing technique for 
NWM predictions. In the latter example, ML algorithms are used to improve and fine-tune NWM output. 

Knowledge gap 
This post-processing technique still utilizes complex and computationally expensive NWM, producing 
forecasts at the same spatial and temporal scale as NWM. This approach does not maximize the potential 
benefits of using ML: forecasting visibility on smaller spatial and temporal scales, without increasing costs 
and computational power. 

Fewer studies were conducted on machine learning algorithms that independently forecasted visibility 
conditions (Fabbian et al., 2007; Cornejo-Bueno et al., 2017; Castillo-Botón et al., 2022). Castillo-Botón 
et al. (2022) also focused on the classification of visibility. The categories used in this study were based 
on the dataset’s statistics and not pre-defined like the categories used by LVNL. To the author’s 
knowledge, there is no research on independent ML algorithms that forecast visibility conditions into pre-
defined categories. Additionally, no research has been done on ML algorithms that forecast visibility 
conditions at multiple locations. Finally, the research mentioned also focused on relatively long 
timescales, from 1 up to 48 hours. There is very limited research on predictions on very short lead times, 
such as the 10-minute-timestep that is required for DST. 

Research objective 

In this research, we aim to fill the knowledge gap on the performance of independent ML algorithms on 
pre-defined visibility categories at multiple locations on relatively short lead times. We investigate the 
performance of ML algorithms in forecasting pre-defined visibility categories at two locations at 
Amsterdam Airport Schiphol. We introduce a simple, easy-to-implement ML algorithm, the Random 
Forest Classifier, and a more complex and time-sensitive algorithm, the Temporal Fusion Transformer. By 
developing these algorithms, we aim to improve the current forecast of visibility conditions and, with that, 
improve the accuracy of capacity predictions. Therefore, our main research question is: 

How do machine learning algorithms perform in forecasting  
pre-defined visibility categories for two locations at Amsterdam Airport Schiphol, 

 on lead times up to 4 hours, with timesteps of 10 minutes? 

We will compare the performance of these models to the quality of the current forecast. We will also train 
both models as a NWM post-processing technique to assess whether the models perform better or worse 
as an independent model rather than a NWM post-processing technique. 
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To reach the objective, the following questions will be answered: 

1. How does a Random Forest Classifier perform in forecasting pre-defined visibility categories for 
two locations at Amsterdam Airport Schiphol, on lead times up to 4 hours, with timesteps of 10 
minutes? 

2. How does a Temporal Fusion Transformer perform in forecasting pre-defined visibility categories 
for two locations at Amsterdam Airport Schiphol, on lead times up to 4 hours, with timesteps of 
10 minutes? 

3. How does the performance of each model change when including NWM data as input, e.g. using 
the model as a post-processing technique? 

Hypothesis 

Since studies have shown that machine learning algorithms based on observations can produce accurate 
visibility forecasts (Boneh et al., 2015; Bartok et al., 2022), we hypothesize that ML algorithms can predict 
fog events more accurately than the current NWM-based forecast. We expect the Random Forest 
Classifier to show the best results, since Castillo-Botón et al. (2022) found the best forecasting results 
using ensemble-model-based algorithms, especially Random Forest models.  

However, we also hypothesize that it is likely that using ML as a post-processing technique could show 
better results than using an ML algorithm independently, since most research has demonstrated the 
potential of ML as a post-processing technique.  

Since fog is generally a short-lived phenomenon, we hypothesize that the ML models are well capable of 
predictions visibility conditions on short timescales such as 10 minutes. We suspect that the models 
perform better on shorter timescales than longer timescales.  

Report structure 
The remainder of the report is structured as follows: In Chapter 2, we will discuss background information 
on the topic. The background information will cover the introduction of the study area, fog formation, how 
fog influences aviation operations and delays, Schiphol’s current fog forecast and machine learning 
principles. In the last section we will also elaborate further on earlier research on machine learning and 
visibility forecasting. We describe our data in Chapter 3 and the methods in Chapter 4, followed by the 
results and their discussion in Chapter 5. We discuss limitations and recommendations for future 
research in Chapter 6 and finish the paper with a conclusion in Chapter 7. 
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2 Background information 
This chapter forms a detailed explanation of the concepts referred to in this study. We first introduce our 
study area, Amsterdam Airport Schiphol. Then, we discuss atmospheric visibility, fog formation 
processes, and climatological patterns of fog at Amsterdam Airport Schiphol. Thereafter we elaborate on 
the impacts of low visibility circumstances on aviation in general and Amsterdam Airport Schiphol in 
particular. Finally, we discuss the principles of machine learning and how machine learning has been 
applied to visibility forecasting in the past. 

2.1 Visibility 
This research focuses on the forecasting of atmospheric visibility. Atmospheric visibility is defined as ‘the 
ability to see and identify prominent unlighted objects by day and prominent lighted objects by night’ 
(Federal Aviation Administration). We can divide visibility into horizontal visibility and vertical visibility. 
Horizontal visibility is commonly measured in meteorology as the meteorological optical range (MOR). 
MOR is defined as the distance over which a beam of light travels before its luminous flux is reduced to 
5% of its original value (MetOffice). In contrast, vertical visibility measures the distance a person can see 
vertically from the earth.  

2.1.1 Horizontal Visibility 
The most crucial phenomenon influencing horizontal visibility is fog. In meteorology, we define fog as a 
situation where the MOR is below 1000 meters (KNMI). However, in aviation, a common threshold for fog 
is 1500 meters (Schiphol, 2016). To forecast visibility accurately, we must be able to forecast fog 
accurately. Understanding what processes contribute to its formation is essential to understanding why 
forecasting fog is challenging. 

Fog formation 
Fog develops when air saturates with water vapor, and the water vapor condenses to form tiny droplets. 
These droplets block the optical path via scattering and absorption of light, reducing visibility (e.g. Izett et 
al., 2018). There are several mechanisms that can cause the air to reach saturation, making some 
locations and seasons more sensitive to fog. The following sub-chapter will give a short overview of the 
different types of fog and their formation processes (Hang et al., 2016; Román-Cascón et al., 2019; Lakra 
& Avishek, 2022). These processes can be broadly categorized based on how saturation is achieved: by 
cooling, adiabatic expansion, adding moisture, or by movement of saturated air masses. 

1. When cooling occurs by removal of heat 
i. Radiation fog. This type of fog forms when air near the ground cools rapidly, which typically occurs 

during clear nights with little wind. This situation allows the ground to radiate heat back into space, 
cooling rapidly (radiative cooling). The cooled ground cools the air above, lowering the air’s 
temperature to reach dew point.  

ii. Valley fog is closely related to radiation fog. Colder air usually settles in valleys overnight, so the 
dew point is reached first at the lowest elevations. This can make certain areas more sensitive to 
fog if located at a lower elevation. Especially in combination with clear nights, these areas often 
experience fog in the early mornings. 

iii. Advection fog. When a warm, moist air mass moves over a colder surface, the warm air loses heat 
to the cold air. The warm, humid air reaches the dew point to form fog. This type of fog is common 
in coastal regions. Sea fog is a type of advection fog. It occurs above locations where warm and 
cold ocean currents meet. 

2. When cooling occurs by adiabatic expansion 
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i. Upslope fog. This fog forms when air with high relative humidity is moved upslope. This causes the 
air parcel to reach the dew point due to adiabatic cooling.  

3. When water vapor is added to an air parcel 
i. Steam fog. In contrast to advection fog, this type forms when a cold air mass moves over a warmer 

water surface. The temperature difference causes water evaporation from the surface, increasing 
the water content in the air parcel above. The evaporated water vapor eventually leads to air 
saturation, causing fog. 

ii. Frontal fog. If rain, originating from warm air, falls through a colder air mass at a frontal zone, the 
precipitation can evaporate into this colder layer. Saturation is reached as evaporation increases 
dew point temperature and decreases absolute temperature. 

iii. Evaporation or mixing fog. When two parcels of different temperatures mix, it can lead to the mixed 
parcel becoming saturated. The resulting temperature after mixing can be low enough to reach 
the dew point, even though one or both parcels were unsaturated. An example is when one parcel 
is relatively warm and humid while the other is cool and dry. 

4. When saturated air changes location 
i. Cloud-base lowering fog. Essentially, cloud-base lowering fog is a type of fog that does not develop 

on-site but rather gets classified as fog as it changes vertical position. A base of low-stratus clouds 
is not much different from fog other than that it is located at an altitude and not at the surface. The 
base of this cloud can descend, and when it reaches the ground, it will be classified as fog 
(Román-Cascón et al., 2019).   

Fog evolution 
Most fog types persist or grow through the same processes that caused their initial formation. However, if 
fog layers are exposed to clear skies, additional radiative cooling can enhance fog layer growth (Yang et 
al., 2023), known as fog-top radiative cooling. This enhanced radiative cooling results in thickening of the 
fog layer, in the same way that radiative fog is formed. This process dominates in thicker fog layers. In 
shallow layers, it is primarily the radiative cooling from the ground that promotes growth (Duynkerke, 
1999). 

Opposite to radiative cooling, clear skies have the opposite effect when fog occurs during the daytime. 
Direct sunlight then causes radiative heating of both the fog layer as well as the surface underneath, 
resulting in dissipation of the fog (Dione et al., 2023). If middle- or high-level clouds are present, they block 
this direct sunlight, preventing dissipation. Long-lasting, heavy day-time fog events therefore often occur 
with clouds at middle or high levels (Guo et al., 2021). 

Fog dissipation 
Fog dissipation is often caused by turbulent mixing. In principle, a stable inversion layer promotes the 
persistence of fog. Moderate wind speed can promote fog formation for some fog types, like upslope or 
evaporation fog, because moisture is transported towards the fog layer. However, if turbulence increases, 
it causes the inversion layer to mix, redistributing heat and moisture. This often causes breakup and 
dissipation of the fog layer (Dione et al., 2023). Similarly, high wind speeds also have this effect. 

Fog-top radiative cooling, described above, can also have a dissipating effect on fog. As the fog layer 
continues to grow, the decrease in temperature at the top destabilizes the inversion layer, increasing 
turbulent mixing with the layer above. The weakening of the inversion layer and the increased turbulence 
often cause breakup of the fog layer. However, in some situations, this turbulence can also cause 
saturated air to be entrained into the fog layer, promoting growth (Li & Pu, 2024). 
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2.1.2 Vertical Visibility 
Opposite to horizontal visibility, vertical visibility is most commonly determined by clouds. The vertical 
visibility is, therefore, often equal to the height of the lowest cloud layer. In aviation, this is often referred 
to as the cloud ‘ceiling’, or ‘cloud base height (CLB)’. In unique situations, vertical visibility can also be 
determined by other phenomena, like smoke. Clouds generally form on larger spatial and temporal scales 
than fog, and therefore vertical visibility is less influenced by short-term fluctuations (Bony et al., 2015).  

2.1.3 Challenges in Forecasting Visibility 
Numerous studies have identified that Numerical Weather Models (NWM) produce fog forecasts that 
often perform significantly worse than the prediction of other variables like precipitation (Zhou et al., 
2012; Izett et al., 2018; Bergot & Koracin, 2021). The cause of this low performance is related to the nature 
of fog in several ways. 

As appears from the processes dominating fog formation, evolution and dissipation, fog is highly 
dependent on many different meteorological variables, like temperature, wind speed and air pressure. 
The dependency on a large number of variables makes the parameterization of fog formation in weather 
models difficult. More specifically, Román-Cascón et al. (2012) argue that the role of turbulence in 
the formation and dissipation of fog is poorly understood.  

Not only meteorological variables, but also environmental factors play an essential role in fog occurrence. 
Local differences in land use or vegetation influence ground temperatures, directly influencing fog 
formation (Duynkerke, 1999). Additionally, due to the correlation with air temperature, fog often quickly 
dissipates in urban areas as a result of the urban heating effect (Gautam & Singh, 2018).  

The dependencies on many variables also cause fog to occur on very small spatial and temporal scales. 
This makes modelling fog more challenging, as NWM generally operate on larger scales, making them 
incapable of capturing the short-lived, local nature of fog. Specifically, the models struggle to accurately 
model the time of onset and dissipation of fog (Steeneveld et al., 2015). Research shows that a high 
resolution is necessary to accurately forecast fog in NWM, even on vertical scales (van der Velde et al., 
2010). 

Many studies confirm that fog forecasts by NWM require improvement. Oppositely, forecasts for vertical 
visibility are often quite accurate (Inoue et al., 2015), but there is much less research on their quality. 
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2.2 Impact of Visibility on Aviation 
To understand the relevance of accurate visibility forecasting, it is important to highlight the effects of low-
visibility conditions. Today’s modern society greatly relies on highly efficient transport systems. As the 
world’s population keeps growing, the dependence and  demand for transport systems increases (Shafer 
& Victor, 1997). One of the most critical sectors providing mobility is the aviation industry. The following 
section will give an overview of the leading causes and consequences of delays in aviation and how this 
affects operations at Schiphol Airport. We will also discuss measures to mitigate delays at Schiphol and 
the details and quality of the current fog forecasts at Schiphol. 

2.2.1 Delays and Costs 
The aim for efficiency mainly drives the aviation industry. Since airports often operate close to their 
maximum capacity, the sector is sensitive to delays. Between 2015 and 2024, over 20% of the scheduled 
US commercial flights experienced delays, of which 25-30% caused by weather (Bureau of Transportation 
Statistics, 2024). The FAA estimates the resulting economic losses to be $33 billion for the year 2019 
(Federal Aviation Administration, 2022). Besides economic effects, delays also greatly influence 
passenger satisfaction. Flight delays are often the primary source of passenger complaints. In January 
2023, over 37% of the complaints issued in the US concerned delays, cancellations or deviations (Office 
of Aviation Consumer Protection, 2023). Finally, delays also result in considerably higher CO2

 emissions, 
thus negatively impacting the environment (Dissanayaka et al., 2019) . For all the reasons mentioned, 
airlines and airports continuously aim to minimize delays as much as possible.  

Delays are, for the most prominent part, caused by weather (Coy, 2006). In Europe, over half of all flight 
delays result from adverse weather conditions (Rodríguez-Sanz et al., 2022). Specifically, extreme 
weather events such as thunderstorms, snow and fog are the main factors contributing to delays. A study 
showed that these events increased the probability of delays by over 25% (Pejovic et al., 2009). Reduced 
visibility, caused by either fog, precipitation, or low clouds, greatly influences delays since reduced 
visibility directly influences an airport’s capacity. As an example, half of all weather-related accidents 
were caused by reduced visibility at a Canadian airport (Leung et al., 2020). 

2.2.2 Airport Capacity 
The main factor determining an airport's 
capacity is the separation between 
aircraft (see info-box). This determines 
how many aircraft can land or take off in a 
specific timeframe. Many factors, like 
aircraft size, runway length, and the 
weather, determine the separation. One of 
the meteorological factors greatly 
influencing aircraft separation is visibility.  

 

Why do we need separation between aircraft? 
Safety is the number one priority in the aviation industry. 
Enough spacing between aircraft means safety can be 
guaranteed. It allows one aircraft to exit a runway, before 
another plane uses it to take off or land. In case incidents 
do occur, air traffic control and following aircraft will have 
sufficient time to respond. Furthermore, the power 
produced by an engine of an aircraft taking off or landing 
causes turbulence (“wake”). Wake turbulence can be 
dangerous for aircraft following. Certain weather events 
call for extra separation between aircraft.  
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Many airports have a navigation system called the Instrument Landing System (ILS), allowing pilots to 
land in all visibility conditions. The worse visibility gets, the more pilots need to rely on ILS rather than their 
view from the cockpit. Therefore, we require higher precision from the ILS system in conditions with worse 
visibility.  An aircraft on the ground can block or disturb the signal of the ILS system for the subsequent 
aircraft following. Therefore, the preceding aircraft needs sufficient time to move sufficiently far away from 
the ILS system so that it does not interfere with the signal for the following aircraft. This ensures the highest 
precision possible from ILS, necessary for low-visibility operations (see info-box) (Dijkstra, 2024).  

 

Besides ILS, low visibility also decreases runway capacities since non-parallel runways can no longer be 
used. Runways that cross are a risk of collision when pilots do not have a clear view of other traffic during 
go-arounds. Since go-arounds are likely to occur during low visibility conditions, crossing runways are 
never used. The thresholds for using crossing runways are 1) horizontal visibility of at least 5 kilometers 
and 2) a cloud base no lower than 2000 feet.  

 

 

 

 

 

 

 

ILS: principle, categories and protection areas 
ILS, or “Instrument Landing System” is a system designed to allow for aircraft to land during low-
visibility conditions, for example at night or during fog. The system transmits radio signals to the 
aircraft to provide guidance in its path towards the runway (also known as the glideslope). 

In its most basic form, the system provides guidance until the aircraft is 200 feet (61 m) above the 
ground. If the pilot is not able to see the runway at that point, it has to cancel the landing and perform 
a ‘missed approach’. This height is also known as a ‘decision height’: the height where the pilot 
decides to continue the landing or not. However, ILS systems can be upgraded in precision. This 
decreases decision height. ILS systems are divided in three categories, CAT I (basic), CAT II and CAT 
III. For CAT II the decision height is 30 m, for CAT III it can even be decreased to 0 m, allowing for 
landings with no visibility at all (ICAO, 2018b) .  

Objects can block or interfere with the radio signal emitted by the ILS system and therefore decrease 
the accuracy of the aircrafts position in the glideslope. For this, so-called “protection areas” are set 
up around the ILS antennas. These areas need to be free of obstacles to allow for an accurate ILS 
performance during CAT II or CAT III operations. It is likely that these protection areas include taxi-
ways. Therefore, aircraft landing need to be sufficiently separated to allow for the preceding aircraft 
to exit the protection area. An example of protection areas at Schiphol is given in Appendix A. 
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2.3 Amsterdam Airport Schiphol 
For our research, we focus on the airfield of Amsterdam Airport Schiphol, located in the western part of 
the Netherlands, in western Europe (Figure 2.1a, 2.1b). The center of the airport is located at 52.308 N, 
4.764 E. The airfield has a total of 6 runways (Figure 2.1c).  
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2.3.1 Fog at Amsterdam Airport Schiphol 
Between 2003 and 2020, fog occurred 42 days of the year on average at Schiphol (KNMI). The most 
common fog types are radiation fog and advection fog (Cannemeijer & Stalenhoef, 1977; Izett et al., 2019). 
Fog occurs two to three times more often in winter and fall than in summer and spring (Figure 2.2). In 
colder seasons, conditions are usually more favorable for fog formation. This can be related to the 
formation of radiation fog. Longer nights allow for more radiative cooling and favor the formation of 
radiation fog in the early mornings.  

 

 

 

a) b) 

c) 

Figure 2.1: Illustration of the location of the study area on a map of the Netherlands (a), an illustration of its location in relation to 
the western part of the Netherlands (b) and an illustration of the entire airfield and its runways in green (c).  Source satellite images: 
Google Earth. Source runway image: GMAP 
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In recent years, fog has occurred less often (Figure 2.3). Between 1971 and 2000, Schiphol experienced 
74 foggy days per year (KNMI). This implies fog frequency at Schiphol decreased by almost 57% in the 
most recent climatological period (1991-2020) compared to two periods prior (1971-2000).  

This downward trend has not been a development in recent years. Studies dating from as early as the 
1960s discussed decreasing fog frequencies, including at Schiphol Airport. Early studies suggest 
improved soil drainage or changes in large-scale weather patterns as causes for this decline (Tonkelaar, 
n.d.). The latter hypothesis was supported by van Oldenborgh et al. (2010), who also noted the downward 
trend was surprisingly similar to that of the atmospheric sulfur dioxide concentration. Some studies argue 
the downward trend is caused by climate change (Hingmire et al., 2022), but they often lack significant 
evidence. (KNMI) 

Figure 2.3: The trend of the amount of days per year with reduced horizontal visibility at Schiphol Airport between 1955 and 2023. 
Amount of days are shown for horizontal visibility below 5000 meters (green), below 1500 meters (blue) and below 200 meters 
(orange). Measured between runway 22 and runway 27. Data source: KNMI. 

Figure 2.2: The seasonal cycle of fog occurrence at Schiphol for the period of 2003 through 2020. Each bar shows the amount  
of days on which fog occurred during that month, averaged over all years. A day is classified as ‘foggy’ when the horizontal visibility 
dropped below 1000 m at any point in time on that day. Data source: KNMI 
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2.4 Low Visibility Procedures at Amsterdam Airport Schiphol 
Even though foggy days are becoming less frequent at Schiphol, their effects can still be substantial, as 
explained in subchapter 2.2. To operate smoothly during low visibility, LVNL  (Air Traffic Control the 
Netherlands) has set up BZO phases (Low-visibility procedure phases, Dutch: BZO (Beperkt Zicht 
Omstandigheden (Schiphol, 2016)) which are based on horizontal and vertical visibility (Table 2.1 / 
Appendix A). The runway capacity decreases for each phase because operating in a higher ILS category is 
necessary. The runway with the lowest visibility determines the category.‘Reduced visibility classes’ are 
defined as BZO phases ‘Marginal’ and ‘A’, ‘B’, ‘C’, and ‘D’, while ‘low-visibility classes’ are BZO phases ‘A’, 
‘B’, ‘C’ and ‘D’ only. 

Thresholds in horizontal visibility and vertical visibility determine ILS categories and BZO phases. 
However, as seen in Table 2.1, below 1500 meters, the horizontal visibility threshold parameter changes 
to ‘Runway Visual Range’, also known as ‘RVR.’ RVR is a meteorological parameter explicitly designed for 
aviation. It considers visibility but combines this with the brightness of the runway lights, as these can be 
adjusted. RVR therefore denotes the distance at which a pilot can identify the runway lights (ICAO, 2018a). 
Since lights make the runway more noticeable, the RVR is often higher than the horizontal visibility. 

A separate case is the one of the “Polderbaan”, Schiphol's longest runway located almost 7 kilometers 
taxiing distance from the main terminal (Figure 2.3: runway 18R/36L). This runway is intensively used: in 
2016, it handled 24% of all take-offs and 38% of all landings at Schiphol Airport (Schiphol, 2017). Due to 
its relatively low noise pollution, the runway is also one of the two primary runways to use during the night 
(23h – 06h) (bewoners aanspreekpunt schiphol, 2022). On about 10 of the 42 foggy days at Schiphol, the 
Polderbaan experiences low-visibility conditions while the rest of the airfield has good visibility. This is 
because the location of the Polderbaan is more susceptible to fog formation than other runways (Izett et 
al., 2019). 

First, the Polderbaan is situated at a lower elevation causing cold air to settle in this location (see 
Background Information - Visibility). Also, the distance between the runway and the main field is so large, 
that the urban heating effect by warm buildings and asphalt is expected to be marginal. Instead, the 
runway is surrounded by grasslands that retain more water and cool quickly. Finally, turbulence of jet 
engines also causes fog to dissipate (Izett et al., 2019). Even though the Polderbaan is extensively used, 
there is only one taxiway beside the runway. Other runways are surrounded by many more taxiways 
leading to different runways and areas of the airfield. Therefore, the turbulent mixing effect of taxiing 
aircraft is much smaller at the Polderbaan. 

Phase Horizontal 
visibility threshold 

Vertical visibility 
threshold 

Max. aircraft movements 
per hour 

Occurrence (%) 

Good Visibility > 5000 km Visibility > 1000 ft 108 87 
Marginal Visibility < 5000 m Visibility  < 1000 ft 108 10 
BZO A RVR < 1500 m Visibility  < 300 ft 80 2 
BZO B RVR < 550 m Visibility  < 200 ft 74 2 
BZO C RVR < 350 m  47 0-1 
BZO D RVR < 200 m  36 0-1 

Table 2.1: Reduced-visibility-procedure categories and their thresholds for visibility and cloud base height, the maximum amount 
of aircraft movements during the phase, and the climatological occurrence of the phase. Table adapted from Wolters et al. (n.d.). 
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Since BZO phases are determined 
by the runway with the lowest 
visibility, this would imply that a 
strict BZO phase would have to be 
applied to the entire airfield if 
visibility conditions are bad at the 
Polderbaan. In 2022, LVNL changed 
its procedures so that the 
Polderbaan could operate in a 
different BZO phase from the rest of 
the airport, creating two ‘BZO 
areas’: West’ and ‘Center’ (Figure 
2.4). Separating the Polderbaan 
from the rest of the airport increased 
the airport’s capacity by 20-35% 
(LVNL, 2022). Therefore, a separate 
visibility forecast for each BZO area 
is required. (Luchthaven Schiphol, 
2022) 

 

 

 

Decision Support Tool 
During low-visibility operations, timely adaptation and mitigation for delays is crucial. LVNL uses a model 
called the Decision Support Tool, or DST, to forecast runway capacities at Schiphol for every 10 minutes 
in the coming 4 hours. It includes meteorological forecasts and real-time data on aircraft en route to 
Schiphol. If the model predicts airport capacities lower than the amount of aircraft to land during a 
particular hour, an air traffic controller can interfere and 1) choose to use a runway combination with 
higher capacity, if available, 2) instruct traffic to hold over a location somewhere along its route or 3) 
instruct traffic to delay its departure so that it will land in a timeslot with higher capacity (Dijkstra, 2024). 
The model also accounts for the number of go-arounds during a specific period. More go-arounds also 
decrease a runway’s capacity, as the same plane will have to come in for landing twice. 

To maximize efficiency, the airport aims to operate close to its maximum capacity. A demand that is higher 
than the capacity will lead to delays. This occurs when aircraft are not regulated enough – the controller 
applies procedures that are not strict enough for the actual conditions. The opposite scenario is also 
undesirable. When the controller applied too restrictive procedures because the current conditions were 
not as limiting as expected, the airport could have handled more aircraft. These aircraft were delayed or 
diverted to reach the restricted capacity, which wasn’t necessary. This results in unnecessary costs and 
delays. Accurate meteorological forecasts are crucial for the airport to operate close to its maximum 
capacity continuously. 

Figure 2.4: The runways of Schiphol with their direction at each end of the runway. 
The orange area is the BZO phase area ‘Center’ (orange)  and the Polderbaan is 
located solely in BZO phase area ‘West’ (blue). Source: Luchthaven 
Schiphol/Google Earth/GMAP 
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Current Fog Forecasts for Schiphol Airport 
The current visibility forecast for LVNL is produced by the Royal Netherlands Meteorological Institute 
(KNMI) specifically for the airfield (Figure 2.5). In the forecast, an ML algorithm named Quantile 
Regression Forest (QRF) produces probabilities of the different BZO phases at Schiphol and their 
determining factors CLB, RVR and visibility. The model uses features from the NWP model ‘HARMONIE’ 
and observations. We will refer to this forecast as the HARMONIE-QRF model. (Wolters et al., n.d.) 

 

 

The HARMONIE-QRF algorithm produces higher accuracy 
compared to the previous forecast (Wolters et al., n.d.). 
However, there is still room for improvement since it 
underestimates most BZO phases (Figure 2.6). In contrast, 
BZO phase D (LVP D) is mostly overestimated. This  phase is 
especially poorly forecasted, partly caused by the meager 
number of observations.  

 

 

 

 

 

When comparing the model's skill to a climatological forecast (Figure 2.7), we can observe that initial 
scores are high, but the forecast quality decreases with increasing lead time. BZO phase ‘D’ shows a 
negative BSS, indicating it is worse than the baseline. The baseline depicts the score of a climatological 
forecast. In a climatological forecast, the probability of future fog occurrence is the same as its historical 
occurrence.  

 

 

Figure 2.5: An example of a probability forecast from the KNMI, showing target features visibility (a), cloud base height (b), RVR (c) 
and LVP (Low Visibility Procedures) (d). The LVP phases correspond to the BZO phases. From Wolters et al. (n.d.) 

Figure 2.6: Reliability diagram of the forecast with 
lead time +1 hr. Data points above the diagonal 
suggest an underestimation of a low-visibility 
event. From Wolters et al. (n.d.) 
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Prior to HARMONIE-QRF, forecasts were made solely by the HARMONIE model (Figure 2.8) and updated 
where necessary by a meteorologist. When starting this research, the latter forecasts were still in use. 
Therefore, we will also benchmark our results to the quality of the HARMONIE model in forecasting 
visibility. We calculated these scores using the HARMONIE-AROME Cy43 re-forecast for the period of 
October 1st, 2020, through September 31st, 2023 (see Data – NWM data). Additional metrics of this 
forecast can be found in Appendix B. The plots indicate the models can capture class ‘Good’  well, but 
substantially underperform in other classes, specifically class ‘A’ and ‘B’.   

Figure 2.7: The Brier Skill Score of the HARMONIE-QRF forecast for lead times up to 6 hours. BSS > 0 indicates better 
performance than climatology, BSS < 0 indicates worse performance than climatology.  From Wolters et al. (n.d.) 

Figure 2.8: Probability of Detection of the horizontal visibility classes of the HARMONIE cy-43 model. 0 indicated worst possible 
score, 1 indicates best possible scores. Some scores missing since there were no instances of the class at that specific lead time. 
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2.5 Machine Learning 
Earlier studies showed that machine learning (ML) algorithms produce visibility forecasts of similar or 
higher quality than NWM (e.g. Bartoková et al., 2015; Colabone et al., 2015; Guijo-Rubio et al., 2018; Miao 
et al., 2020; Bartok et al., 2022; Salcedo-Sanz et al., 2022). Hence, using ML could likely improve the 
quality of Schiphol’s current forecast. In this section, we will explain the basic principles of ML, different 
types of ML algorithms and the challenges that arise when using ML for imbalanced datasets and time 
series. Finally we discuss previous research on ML and visibility forecasts. 

2.5.1 Principles of Machine Learning Algorithms 
ML is an Artificial Intelligence (AI) type. At its core, ML involves algorithms that learn from historical data, 
by identifying patterns or relationships within this data (El Naqa & Murphy, 2015). In turn, the algorithm 
uses these identified patterns to make predictions for new, unseen data. The learning process is usually 
divided into two types: regression, where the model predicts continuous values, and classification, where 
the model predicts outputs into categories.   

A limitation of ML algorithms is that they often need large amounts of data to capture all relations between 
the variables in the dataset accurately (Mastorakis, 2018). These amounts of data are not always 
available, especially when considering rarely occurring situations like low visibility, making the 
application of ML on visibility forecasts challenging (Bari et al., 2023). The exact amount of necessary data 
points highly depends on the type of algorithm and data.  

Target and predictor variables 
Within ML algorithms, we make a distinction between targets and predictors (Balali et al., 2020). The 
output variable, or the variable the algorithm tries to predict, is called the target. In light of this study, the 
target would be visibility. The model tries to find relationships of the target variable to other variables, 
which we call predictors. For example, predictors for visibility could be temperature, wind speed and air 
pressure, as visibility is dependent on these variables.  

Input data: training and testing 
The dataset that is presented to an ML algorithm should be split into different subsets: one for training the 
model and one for evaluating its performance (Goodfellow et al., 2016). The training set is the data used 
to train the model, while the test set is used to evaluate the model's performance on unseen data. It is 
important to split these datasets, so that the model will not be evaluated on data that it has already seen. 
Therefore, the two sets must be independent of each other, e.g., do not have overlapping data points 
(Thomasson, 2023).  

Hyperparameters 
Finally, hyperparameters are the settings and configurations of the model that allow for output 
optimization. These settings are set before the model training begins and, thus, do not change throughout 
the training process. Hyperparameters differ significantly between different kinds of ML algorithms. 
Optimizing hyperparameters is known as hyperparameter tuning, where the model's performance is 
evaluated for each hyperparameter setting to find the most optimal combination. 

2.5.2 Training and Fitting Machine Learning Algorithms 
Training an ML algorithm is done by presenting a dataset to the model, and telling it what variable is the 
target and which variables are predictors. The model then tries to identify meaningful relationships 
between each predictor and the target. However, a situation can occur where the model relates small 
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changes in a predictor to the target, that are not meaningful in real life. For example, the data may contain 
a small spike in relative humidity which was followed by a fog event. The model might mistake this spike 
as the cause of the fog event, and assume such a spike always leads to fog. This is called ‘overfitting’. 
When a dataset is noisy, like large real-world datasets (e.g., meteorological observations), the risks of 
overfitting are relatively large (Bentéjac et al., 2021). Similarly, underfitting can occur, where the algorithm 
fails to capture the complexity of relationships between variables. 

One way to prevent under- and overfitting is cross-validation, which includes splitting the entire dataset 
into subsets. The model is trained for multiple iterations, using a different subset each time. This method 
is especially suitable for relatively small datasets, as the complete dataset is used to train the algorithm. 

2.5.3 Decision Trees 
The Random Forest algorithm is a type of Decision Tree 
(Figure 2.9). Decision trees are one of the most used ML 
algorithms (Breiman, 1984). A DT model works just as a real-
life decision tree. At each level of the tree, the dataset is split 
into subsets based on a threshold of a particular variable.  
Eventually, the splitting reaches a final subset, where the 
dataset is classified into pure ‘leaf nodes’. The final forecast 
is based on the output of all leaf nodes. 

2.5.4 Neural Networks 
The Temporal Fusion Transformer is a model based on a neural network. A neural network is a type of ML 
algorithm designed to function like the human brain. The models are composed of layers, often called 
‘neurons’. In each layer, a transformation is performed on the input data, enabling the model to recognize 
patterns. If the pattern is significant for the outcome, a weight is assigned to this layer. The final output is 
a joint prediction based on all layers. If there are two or more layers in a neural network, they are classified 
as a ‘deep learning’ network. The first trainable neural network was presented by Rosenblatt (1957). 

2.5.5 Imbalanced Datasets 
The quality of input data is of great importance to the performance of any type of ML algorithm 
(Mastorakis, 2018). When some cases occur significantly more often than others, forming majority and 
minority classes, the dataset is so-called “imbalanced” (Chawla et al., 2004). Classifying algorithms are 
likely to ignore the minority classes, resulting in high performance scores for the majority classes but low 
scores for the minority classes(Liang, 2013). In many cases, the minority classes are the classes of 
interest (Moniz et al., 2017), making the accurate performance for these classes even more critical. Since 
fog rarely occurs, visibility datasets are often highly imbalanced, with many samples in good visibility 
categories. To avoid bias of the models towards good visibility, these datasets often need to be balanced. 

There are multiple methods for dealing with imbalanced datasets. A popular strategy is to resample the 
input dataset (Moniz et al., 2017). In resampling, a dataset can be either under- or oversampled. A 
combination of both is also possible. Undersampling involves decreasing the size of the majority class by 
removing class samples, while in oversampling, more minority class samples are created (Liang, 2013). 
A risk of undersampling is that the resulting dataset is too small to train the ML algorithm accurately. On 
the other hand, a risk of oversampling is that the synthetically created samples do not add any new 
information for the model (Cateni et al., 2014). The majority class is still more broadly defined, making it 
easier for the model to generalize this class than any minority class. 

Figure 2.9: the principle of a decision tree. The 
decision nodes split into new nodes until a final 
stage is reached at the leaf nodes. Source: 
Arain/Develops 
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2.5.6 Time Series Forecasting  
The natural order and temporal correlation between variables often pose an extra challenge when using 
classifiers to make time series forecasts. Ordinary classification algorithms are usually incapable of 
adequately capturing this temporal correlation (Ruiz et al., 2021).  

First of all, time series often display concept drift (Widmer & Kubat, 1996; Chawla et al., 2004), which 
describes changes in the distribution of the target variable in relation to the predictor variables (Moniz et 
al., 2017). In other words, the target will not always have the same relation to the predictor variables, as 
this relation depends on time. For this reason, ‘date’ and ‘time’ are often included in the algorithm as 
predictor variables. For visibility, concept drift can be described by the high seasonality, thus dependence 
on the time of the year, and the fact that fog often occurs during specific times of the day.  

Furthermore, time series are often autocorrelated, implying that future values depend on past values. A 
way to address autocorrelation is to include lagged versions of the predictor variables (Surakhi et al., 
2021). 

Finally, when it comes to multi-step forecasting, a distinction can be made between direct and recursive 
forecasting (see Figure 2.10), which both have advantages and disadvantages. In direct forecasting, a 
different model is trained to independently forecast each future time step. Oppositely, in recursive 
forecasting, only one model sequentially forecasts each future time step, taking its own predictions as 
preceding time steps. An advantage of recursive forecasting is that it only requires one model compared 
to the multiple models needed for direct forecasting. However, recursive forecasting has the risk of 
compounding errors, as each step is affected by the error in the previous prediction. The best method 
depends on the situation, such as the input data type and computational power available.(Spektor, 2023) 

2.5.7 Sequence Models 
Oppositely, sequence models are ML models specifically designed for sequential data like timeseries. 
These models focus on learning temporal dependencies of variables in the dataset, making them well-
suited for tasks like timeseries forecasting. 

The TFT is an example of a sequence model. However, this model incorporates more advanced 
mechanisms, like attention layers and gating mechanisms. The attention layers help the model ‘pay more 
attention’ to the most important parts of the input data by assigning weights to more relevant features or 
time points. The gating mechanisms act like control switches that regulate how much information is 
passed to the model, to avoid overfitting. The TFT is specifically powerful for forecasting at multiple 
forecasting horizons, as well as forecasting with multiple input and output variables. A unique aspect of 
this model is that you can input both known and unknown feature variables, making it very useful for real-
life practices like meteorological forecasting. 

TFT’s use loss functions to optimize the model. A loss function measures how well the model’s predictions 
align with observation, after which the model can adjust internal parameters to improve. Lower loss 
values indicate better performance, which is why models usually aim to minimize loss. The most common 

Figure 2.10: direct forecasting (left) versus recursive forecasting (right). Source: Spektor, 2023. 
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loss function is the ‘Quantile Loss’ (Koenker & Bassett, 1978), which is used in regression tasks and 
predicts quantiles of the target variable. For classification, a common loss function is ‘Cross Entropy’ 
(Shannon, 1948), which measures how far the model's forecasted probability (between 0 and 1) is from 
the observation (1 for observed, 0 for not observed). A variant of the Cross Entropy function is the ‘Focal 
Loss’ function (Ross & Dollár, 2017), specifically designed to handle class imbalance. The function 
introduces an extra scaling factor, in which it down-weights loss on easy-to-predict samples while it 
increases the weight on harder, usually rare samples. If this scaling factor does not sufficiently handle the 
class imbalance, an additional weighting factor can be applied to each class. 

2.5.8 Machine Learning and Visibility Forecasts 
Many studies have shown that many machine learning types are capable of forecasting visibility 
conditions in different configurations. The following section provides an overview of earlier studies on 
machine learning and visibility forecasting. Specifically, since our research focusses on applying a 
decision tree and neural network to the problem, we focus on studies that were conducted on these two 
types of models. 

Model performance is often evaluated with metrics or skill scores like the Probability of Detection (POD) 
and the Critical Success Index (CSI) which both score the model’s performance between 0 (low) and 1 
(perfect). The False Alarm Rate (FAR) shows the ratio of incorrectly forecasted fog events between 0 (low) 
and 1 (high). Finally, the Brier Score is a score that assesses the skill of a probabilistic forecast, with 0 
being the perfect score and higher values indicating worse performance. For formulas on the calculation 
of these metrics, please refer to the Methods chapter. 

The very first application of an ML algorithm for fog forecasting was by Koziara et al. (1983), using a linear 
approach to post-process NWM forecasts, outperforming competing models at the time (CSI 0.42 – 0.45, 
Brier Score 0.27 – 0.34). Several years later, Tag and Peak (1996) also applied a machine learning 
approach to marine fog forecasting (POD 0.543). They concluded machine learning is a possible viable 
tool for visibility forecasting, but only when used with “reliable data and sufficient cases of known 
outcome” (Tag & Peak, 1996). 

Decision Trees 
It wasn’t until 2001 that the first decision tree was applied to the problem. Wantuch (2001) showed 
promising results of a short-term decision-tree-based model, which was quickly adopted by the 
Hungarian Meteorological Service. However, decision-tree forecasting didn’t make its breakthrough until 
many years later. In 2015, Bartoková et al. (2015) proposed using a decision tree to improve the output of 
NWM for fog forecasting in Dubai, focusing on short-term predictions up to several hours. When the 
algorithm was used as a NWM post-processing technique it showed the highest results (POD 0.88).  

Many other studies also used decision trees as post-processing techniques: Herman and Schumacher 
(2016) improved NWM forecasts on lead times of 1 to 12 hours for visibility forecasting in aviation, and 
Bari (2018) implemented similar methods to improve visibility forecasting on lead times of 3 to 12 hours. 
Kim et al. (2021) included ECMWF air pollutant data and focused on short-term predictions of 1 to 3 hours. 
The decision-tree-based fusion model by Yu et al. (2021) includes regional model output and also 
forecasted visibility for aviation on short lead times of 30 minutes to 3 hours (POD 0.13 – 0.72, FAR 0.28 – 
0.67, CSI 0.22 – 0.50) and Kim et al. (2022) combined synoptic observations with NWM output to forecast 
visibility conditions up to 36 hours. Negishi and Kusaka (2022) used decision trees as part of a hybrid 
approach to improve radiation forecasts on short lead times (1 to 3 hours; CSI 0.382) in Japan, and Parde 
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et al. (2022) post-processed NWM output on lead times of 6 to 12 hours (POD 0.95, FAR 0.43, CSI 0.55, 
Brier Score 0.13). Finally, Thomasson (2023) applied decision trees as a post-processing technique on an 
NWM grid over Denmark, focusing on lead times of 1 to 12 hours (POD RFC 0.338). 

Besides being used as a post-processing technique, decision trees have also been shown to be effective 
in independently forecasting visibility. For example, Dewi et al. (2020) used decision trees to predict fog 
at airports over 1 to 3 hours (POD 0.57 – 0.77). Han et al. (2021) used decision trees in forecasting fog 
dissipation on lead times of 1 to 3 hours (CSI 0.82 – 0.96)  and Ortega et al. (2019) focused on the 
classification of visibility categories on lead times of 1 to 6 hours. Zhen et al. (2023) included decision 
trees in their fusion model for real-time fog prediction, focusing on lead times from 30 minutes to 12 hours 
(CSI 0.42 – 0.89).  Penov and Guerova (2023) focused on high-accuracy, short-term forecasts for airports 
(POD 0.3, FAR 0.17, CSI 0.27) and Ohashi & Hara (2024) applied decision trees to forecast the expansion 
of morning sea fog over 1 to 6 hours (POD 0.733 – 0.848, Brier Score 0.125 – 0.83). Liu (2024)applied 
decision trees to forecast winter fog, focusing on complex terrain, over a horizon of 3 to 12 hours (POD 
0.885, FAR 0.542, CSI 0.535). Almeida et al. (2023) showed the effectiveness of a decision tree in 
dynamically improving predictions with evolving weather conditions over 6 to 12 hours (POD 0.93 – 0.99, 
FAR 0.32 – 0.34, CSI 0.63 – 0.67) and Zhang et al. (2022) successfully applied decision trees over longer 
timescales (1 to 24 hours).  

These studies show that decision trees have proven to be successful at forecasting multiple types of fog 
and visibility over multiple forecasting horizons both independently and as an NWM post-processing 
technique. 

Neural Networks 
Besides decision trees, many studies have focused on using neural networks for visibility forecasting. For 
example, Fabbian et al. (2007) used a classification neural network at Canberra Airport in Australia, 
Colabone et al. (2015) applied an artificial neural network for back-propagation on visibility forecasts with 
a 95% success percentage, Durán-Rosal et al. (2018) applied evolutionary neural networks on fog 
prediction at Valladolid airport in Spain and Miao et al. (2020) tested Long Short-Term Memory networks 
in China. Liu (2024)also applied neural networks to forecasting of winter fog over complex terrain and 
Negishi and Kusaka (2022) applied neural networks to radiation fog prediction. Other algorithms were also 
tested, including Support Vector Regressions (SVR), Extreme Learning Machines (ELM) (Cornejo-Bueno 
et al., 2017), ordinal classifiers (Guijo-Rubio et al., 2018) and fuzzy logic-based predictors (Miao et al., 
2012) (POD 0.66-0.96). Boneh et al. (2015) applied a Bayesian network at Melbourne Airport, which 
successfully forecasted fog (POD 0.80-0.94) and is now operational. 

The first case fusion-based neural network ‘Temporal Fusion Transformer’ being used to forecast visibility 
conditions was presented by Wehrli et al. (2024) at the EMS conference in 2024. Wehrli used the TFT to 
forecast visibility quantiles and found promising results of Brier Scores close to 0.01 on a forecasting 
horizon of 180 minutes. The results showed the TFT is a model well-capable of forecasting visibility 
conditions. 
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3 Data 
The scope of this research is to design ML algorithms to forecast visibility conditions at Amsterdam Airport 
Schiphol. We train two models, namely the RFC and TFT. As described in the previous chapter, both 
models have been shown to be capable of accurately forecasting visibility conditions. In this section, we 
describe the data we used to train the models. We discuss the data source, any general pre-processing, 
and some dataset statistics. 

3.1 Observational Data 
We used observational data from 20 FD12P Present Weather Sensors alongside the runways of Schiphol, 
made available by the KNMI (Figure 3.1). The dataset runs from January 1st, 2012, to March 31st, 2017, 
with time stamps of 1 minute. All variables in the dataset are presented in Appendix C. Each measurement 
station has its own unique Location-ID, consisting of ‘VAM’, indicating the station is located in Amsterdam, 
followed by the two-digit runway number and a possible L/C/R indicating the left, center or right runway, 
and positional indicator, describing at what position along the runway the station is located. The positional 
indicators are ‘t’ (touchdown zone), ‘m’ (middle zone), ‘n’ (north), ‘s’ (south), ‘e’ (east) and ‘w’ (west). 

Figure 3.1: the location of the 20 measurement stations along the runways of Schiphol Airport. FD12P Present Weather 
Sensors shown in blue, and the Automated Weather Sensor in orange. Stations are named according to their position 
relative to the closest runway, ‘t’ meaning touchdown zone, ‘m’ middle zone, ‘n’ north, ‘s’ south,  ‘e’ east and ‘w’ west. 
Source: Google Earth. 
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Not every sensor’s dataset contained all variables of interest (for variables used please refer to the 
Methods chapter). For each BZO (Beperkt Zicht Omstandigheden) area, we created a dataset by averaging 
the available recordings of its sensors. All sensors weighed equally in the averaging, as we assumed that 
the sensors are relatively evenly distributed in both areas and the center of the BZO area is representative 
of the entire area. This resulted in two datasets with the same variables, one for each BZO area. 

The dataset also contained many missing values. To impute these values, we used a Random Forest 
regressor. This is a common practice for imputing missing data in meteorological datasets (Gorshenin & 
Lukina, 2021). The imputation was executed using the Python class ‘IterativeImputer’ with its estimator 
‘RandomForestRegressor’, both available in the scikit-learn library. The dataset’s statistics showed 
minimal changes after imputing missing values, so we can assume the data structure was well preserved. 
These statistics, as well as the amount of missing values per variable are shown in Appendix D. 

Table 3.1 quickly confirms a spatial pattern in low visibility circumstances. The stations in BZO area West, 
along the Polderbaan, (runway 18R or 36L, highlighted in orange) recorded the most low-visibility 
circumstances of all stations. Note that even though the VAM18Cm27 station does have a relatively low 
percentage of ‘good’ visibility recordings, the percentage of recordings in all BZO phases is still lower than 
the posts in BZO area West because the amount of recordings in ‘Marginal’ is relatively high. The table also 
clearly shows the highly imbalanced nature of the dataset, as  low-visibility conditions only make up about 
1-3% of all recordings.  

Table 3.1: Distribution of the number of samples across the different visibility phases for all measurement stations, ordered by 
relative time spent in good visibility. The total sample amount is given for each station, along with the percentages of samples 
recorded in each visibility category. Stations in BZO area West are highlighted in orange. VAM18Ct was excluded since it did not 
contain any visibility recordings.  

Location-ID Total 1-min 
Samples 

BZO D 
(%) 

BZO C 
(%) 

BZO B 
(%) 

BZO A 
(%) 

Marginal (%) Good (%) 

VAM18Rtw 2626232 0.79 0.45 0.29 0.96 8.38 89.14 
VAM18Cm27 763554 0.35 0.28 0.18 0.86 9.12 89.20 
VAM18Rms 2626217 0.73 0.47 0.28 0.95 8.27 89.30 
VAM18Rmn 2626063 0.76 0.46 0.28 0.95 8.20 89.36 
VAM36Lt 2616044 0.75 0.50 0.29 0.88 7.83 89.75 
VAM18Rte 2626172 0.69 0.45 0.29 0.83 7.88 89.86 
VAM27t 2607455 0.53 0.34 0.23 0.82 7.91 90.17 
VAM36Ct 2625178 0.51 0.34 0.21 0.76 7.60 90.58 
VAM18Ctpws 2625519 0.47 0.36 0.20 0.74 7.56 90.68 
VAM06t 2626249 0.49 0.36 0.22 0.71 7.54 90.69 
VAM18Lt 2626373 0.49 0.33 0.21 0.72 7.50 90.75 
VAM22t 2626285 0.44 0.32 0.20 0.71 7.39 90.93 
VAM27m 2604578 0.44 0.28 0.18 0.64 7.51 90.95 
VAM09t 2595391 0.31 0.27 0.18 0.71 7.52 91.00 
VAM36Rm 2626308 0.48 0.32 0.21 0.65 7.17 91.17 
VAM36Rt06 2626294 0.46 0.34 0.21 0.67 7.15 91.19 
VAM24t 2626323 0.39 0.29 0.17 0.59 7.19 91.37 
VAM06m 2504369 0.36 0.30 0.20 0.65 7.06 91.44 
VAM36Cd36R 2620475 0.43 0.31 0.19 0.64 6.90 91.54 
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3.2 NWM Data 
The NWM data used for this research is the HARMONIE-AROME Cy43 reforecast made available by KNMI 
in the KNMI Data Platform (Tijm, 2024). The dataset contains meteorological variables for the near-
surface boundary layer (up to 300 m). Appendix C shows a table with a complete overview of the variables 
in the dataset.  The data spans from October 1st, 2020 to September 30th, 2023. The domain spans from 
49.000 N to 56.002 N latitude and 0.000 E to 11.281 E longitude and has a resolution of 2 kilometers. We 
selected the domain cell containing the measurement station from which we collected the visibility 
observations (AWS data). The center of this grid cell is located at 52.312 N, 4.785 E. 

Besides the latitude and longitude dimensions, the dataset contains two height dimensions. For 
temperature, the dimension has levels 0, 2, 50, 100, 200, and 300 (meters). For wind variables, the 
dimension has levels 0, 10, 50, 100, 200, and 300 (meters). We used 2-meter values for temperature 
variables and 10-meter values for wind variables. 

A new run is produced every 6 hours, at 00 UTC, 06 UTC, 12 UTC and 18 UTC. Each run has a lead time of 
60 hours with an output timestep of 1 hour. The first 6 hours of each run were maintained and merged to 
form a continuous time series. 

3.3 AWS Data 
The NWM dataset did not have the same time range as our observational dataset. For this reason, we had 
to collect additional observations for the time range of the NWM dataset. One of the sensors at Schiphol 
is an Automated Weather Sensor (AWS), which automatically makes recordings every minute. Hourly data 
of this sensor is made available by the KNMI from 1951 onwards (KNMI). We extracted data from this 
sensor from October 1st, 2020, to September 30th, 2023. This data contained the target variable (visibility) 
as well as additional observations of meteorological variables, so that the models could also be trained 
on historical observations besides NWM data. These variables were chosen to best match the variables 
in the observational dataset. A complete overview of the variables in this dataset is given in Appendix C. 

3.4 Runway Visual Range and Cloud Base Height Data 
Runway Visual Range (RVR)  was not present in any dataset and cloud base height (CLB) was not present 
in the AWS dataset. These variables were necessary to train models to predict RVR and vertical visibility 
respectively. LVNL (Air Traffic Control the Netherlands) maintains records of these variables. This data 
was recorded by the same Present Weather Sensors as the observational data.  

CLB was added to the AWS dataset as an extra column. RVR was added to the observational dataset and 
AWS dataset. Recordings were not regular, so their values were coupled to closest minute. If two RVR 
recordings were within a minute, their value was averaged. Furthermore, RVR was only recorded for active 
runways, and only once horizontal visibility drops below 1500m. Therefore, RVR values were imputed into 
the horizontal visibility data whenever they were available. This version of the dataset was only used when 
predicting ‘RVR’. When the target was ‘horizontal visibility’, RVR was left out the dataset. 
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4 Methods 
This subchapter describes our approach of training and testing the machine learning (ML) algorithms. In 
general, models were designed to forecast visibility into different categories based on the BZO (Beperkt 
Zicht Omstandigheden) phases (see Background Information – Low visibility Procedures at Amsterdam 
Airport Schiphol), over a forecasting horizon of 4 hours with timesteps of 10 minutes. This forecasting 
horizon was chosen to align with the forecasting horizon of the Decision Support Tool (DST; see 
Background Information – Low Visibility Procedures at Amsterdam Airport Schiphol), so forecasts could 
be easily implemented in DST.  

We repeated all experiments for three targets: ‘horizontal visibility’, ‘RVR’ (Runway Visual Range) and 
‘vertical visibility’. The models classified output of horizontal visibility and RVR into the following classes: 

G. 5000 m ≤ visibility 
M. 1500 m ≤ visibility < 5000 m 
A. 550 m ≤ visibility < 1500 m 
B. 350 m ≤ visibility < 550 m 
C. 200 m ≤ visibility < 350  
D. 200 m > visibility 

Or, similarly for vertical visibility, values were classified in the following classes: 

G. 1000 ft ≤ visibility 
M. 300 ft ≤ visibility < 1000 ft 
a. 200 ft ≤ visibility < 300 ft 
b. 200 ft > visibility 

In the rest of this chapter we discuss the training and evaluating processes for both the Random Forest 
Classier (RFC) and the Temporal Fusion Transformer (TFT). For each model, we will first describe the pre-
processing steps taken to prepare the dataset. Then, we describe the general set-up of the model, 
followed by the different experiments we executed to test the model’s performance. Finally, we go into 
depth on the different evaluation metrics we used to assess the model's performance. 

We used a High-Performance Computing Cluster (HPC Cluster) to store data and execute scripts. Scripts 
were written in the programming language Python. Data handling and structuring using libraries Pandas 
(McKinney, 2010) and NumPy (Harris et al., 2020) . Calculations were mainly done using SciPy (Virtanen 
et al., 2020) and plots were made using Matplotlib (Hunter, 2007). Any other specific libraries used will 
be described in each step of the modeling process. 
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4.1 Random Forest Classifier 

4.1.1 Pre-processing steps 
Dataset Transformations 
The observational dataset was transformed into a regular Pandas DataFrame instead of a time series. We 
added sine-transformed variables for ‘Month’, ‘Date’ and ‘Time’ as predictor variables, creating the 
variables ‘Time_Sin’ and ‘Month_Day_Sin’.  This ensured the RFC would still consider temporal and 
seasonal dependence. Although ‘Years’ were not defined as predictor variables, we kept the column so 
that data could still be ordered chronologically, and cross-validation could be performed based on years.  

Lagged Features 
To account for the autocorrelation in our observational dataset (see Background Information – Machine 
Learning), we included lagged versions of each predictor. By adding lags, the model can recognize 
dependencies on previous timesteps.  

To determine the optimal number of lags, we calculated autocorrelation for visibility below 5000 meters 
(reduced visibility classes; 4.1.a and 4.1.c) and below 1500 meters (low-visibility classes; 4.1.b and 
4.1.d). Autocorrelation values range from -1, indicating opposite correlation, and 1, indicating perfect 
correlation.  The shaded region indicated the 95% confidence interval. If the autocorrelation is above the 
confidence interval, we can say that the timestep is significantly correlated with the timestep X-minutes 
before (the amount of minutes being the lag). 

Figure 4.1: Autocorrelation for visibility values below 1500 meters (above) for BZO area West (left) and Center (right), and for 
visibility values below 800 meters (below) for BZO area West (left) and Center (right). Autocorrelation showed by bars and 95% 
confidence intervals in shaded blue. Autocorrelation above the confidence interval can be considered significant. 

a) b) 

c) d) 
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The figures show that autocorrelation remains significant for BZO West but drops below the confidence 
interval at about 130 minutes for BZO Center. To keep consistency between our models, we applied lags 
of up to 240 for both locations, in 10-minute increments. 

We only used lags in our ML models that would be available in real time. If T is the current time, the forecast 
of T+10 utilized all lags up to T-240. However, for T+20, lag T-10 would not be available, so the model used 
all lags from T-20 to T-240. This extends over all lags. 

Balancing techniques 
The previous chapter on Data showed that our observational dataset was highly imbalanced over the 
visibility categories. Therefore, we used resampling techniques to balance the dataset. Moniz et al. 
(2017), found the combination of so-called “SMOTE” oversampling and random undersampling (SMOTE-
RUS) performs best for Random Forest regression on time series. Castillo-Botón et al. (2022) found this 
method successful for Random Forest Classifiers. 

SMOTE, or Synthetic Minority Over-sampling Technique, is the most common oversampling technique. It 
was developed by Chawla et al. (2002) and involves creating synthetic cases in the minority classes. The 
technique creates new samples by considering existing samples' characteristics. New samples are 
created on the ‘line segments’ between existing samples' positions. As the name implies, random 
undersampling includes randomly removing samples from a majority class. No characteristics or values 
of variables are considered (Castillo-Botón et al., 2022).(Dholakiya, 2023) 

We implemented both techniques using the Imbalanced-Learn Python library from Scikit-Learn 
(Pedregosa et al., 2011). The strategies were very effective for both horizontal visibility and vertical 
visibility (horizontal visibility: Figure 4.2; vertical visibility: Appendix C). 

a) b) 

Figure 4.2: The distribution of horizontal visibility in the original dataset (blue) and the resampled dataset (orange)b) of 1-minute 
observations. The original dataset was highly imbalanced with the majority class being 10 to 100 times larger than the minority 
classes.  In the resampled dataset, all classes have the same size. 
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Cross-validation 
As explained in the Background Information chapter, a dataset must be split into a training and test 
dataset. To ensure the entire dataset was used to train the model, we set up cross-validation. Herman and 
Schumacher (2016) state that at least three years of data is necessary to capture the relationship between 
visibility and the predictor variables for hourly datasets. We followed this recommendation since we used 
hourly data in the NWM post-processing experiments. Therefore, following Thomasson (2023), the cross-
validation contained five folds, each of one year (see Figure 4.3). This implies that four years of data will 
be used to train the model in each iteration. The remaining year is used as the test set. This approach is 
justified by the climatology of the dataset, as all years show similar patterns in the occurrence of 
horizontal and vertical visibility (Appendix C). Furthermore, to avoid data leaking, we also follow 
Thomasson (2023) to imply a 72-hour gap, equal to 4320 1-minute timesteps, between each fold.  

 

 

 

 

 

 

 

 

Figure 4.3: A schematic overview of the cross-validation scheme. Folds are divided by the separate years. In each fold one year 
forms the test set (orange), while the other four years are the training set (blue). 
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4.1.2 Model set-up 
For training the RFC, we followed a two-phase approach after Bartok et al. (2022). In this approach, a rule-
based system first distinguishes between class ‘Good’  and reduced visibility classes, after which the RFC 
is only trained on the reduced visibility classes. This approach minimizes the bias of the model towards 
class ‘Good’.  A visual overview of the model is shown in Figure 4.4, where the input and output are shown 
in blue, with characteristics of the input and output data in lighter blue. The main model components in 
orange are the “Rule-based system” and the “Random Forest Classifier”. In green are the different visibility 
categories. We used the RandomForestClassifier class, available from the Scikit-learn Python package, 
which is an open-source, easy-to-implement package for machine learning in Python (Pedregosa et al., 
2011). 

1. “Rule-based” system: Based on statistics of the variables in the dataset, determine whether a “No 
reduced visibility” event can be assumed. The minimum, maximum, lower 2.5% quantile, and upper 
97.5% quantile of both no reduced visibility (h.vis ≥ 5 km) and reduced visibility (h.vis < 5km) are used. 
If “No reduced visibility” cannot be assumed, continue to phase 2. 

2. Random Forest Classifier: The RFC is trained to classify classes ‘Marginal’, ‘A’, ‘B’, ‘C’ and ‘D’ based 
on the thresholds in visibility for the BZO categories (see Background Information – Low Visibility 
Procedures at Amsterdam Airport Schiphol). 

4.1.3 Experiments 
In this final section we describe the three experiments we executed to evaluate and compare different 
versions of the RFC. We discuss the variables used as predictors and different model settings. Each 
experiment was repeated for three targets: ‘horizontal visibility’, ‘RVR’ and ‘vertical visibility’. The 
predictors used were based on earlier research on Random Forest Classifiers and visibility (Fabbian et al., 
2007; Dewi et al., 2020; Bartok et al., 2022). For all experiments we used default hyperparameter settings 
of the RandomForestClassifier class from Scikit-learn (Pedregosa et al., 2011). 

Figure 4.4: General example of the model setup with target ‘RVR’. Input variables shown on the left (T =  model components in 
the middle (orange), classified categories in green and output on the top right. 
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Experiment 1 – RFC-Direct  
First, we trained a direct RFC, meaning the model trains predict each future timestep directly from the 
known values at timestep zero (see Background Information – Machine Learning). To achieve this, a 
separate classifier was trained for each timestep on the forecasting horizon. We trained a total of 24 
models; one for each 10-minute timestep within 4 hours. The predictors are presented in Table 4.1. 

Experiment 2 – RFC-Recursive 
In the second experiment, we trained a recursive RFC. This model recursively predicts each timestep 
based on the previous one, and thus only consists of 1 model, rather than 24 separate ones. We executed 
this experiment to compare the performance of this simple, quick approach to direct RFC, which requires 
more computational power and time. The predictors are presented in Table 4.1. 

Experiment 3 – RFC-HARMONIE 
Finally, we also want to be able to compare our model’s performance to that of a NWM post-processing 
technique, as these models were found to perform well (see Background Information – Machine Learning). 
Therefore, we perform an additional experiment where we use our RFC as a post-processing technique on 
the NWM model ‘HARMONIE’. As predictors, we use the same set as in the first experiment, but with 
additional HARMONIE variables (Table 4.1).  

Since the HARMONIE dataset did not overlap with our observations, our observational predictors and 
targets came from a different dataset: the AWS sensor (see: Data) and from LVNL (for cloud base height).  

Table 4.1: An overview of the different predictors used for the three experiments executed for the Random Forest Classifier.  

Experiment Predictors  
1 – RFC-Direct • 2-m 1-min average air temperature 

• 2-m 1-min average dew point 
temperature 

• 2-m 1-min average relative humidity 
• 2-m 1-min average wind speed 
• 2-m 1-min average wind direction 
• 1-min average rainfall intensity 

• 1-min average surface air pressure 
• Cloud base height at time of 

observation 
• Month_Day_Sin 
• Time_Sin 

2 – RFC-Recursive  Same as Experiment 1 for T+10 
 

For recursive timesteps: 
• Class of previous timestep 
• Month_Day_Sin 
• Time_Sin 

3 – RFC-HARMONIE Observational variables: 
• 1.5-m air temperature at the time of 

observation 
• 1.5-m dew point temperature at the time 

of observation 
• 1.5-m relative humidity at the time of 

observation 
• 2-m wind direction, average over last 10 

minutes of the hour 
• 2-m 1-hour average wind speed 
• Hourly global radiation 
• Hourly precipitation amount 
• Air pressure reduced to mean sea level 

at time of observation 
• Cloud base height at time of observation 

HARMONIE variables: 
• 2-m air temperature at time of 

forecast 
• 2-m dew point temperature at time 

of forecast 
• 10-m wind speed at time of 

forecast 
• 10-m wind direction at time of 

forecast 
• Total cloud cover at time of 

forecast 
• 2-m relative humidity at time of 

forecast 
• Surface visibility at time of 

forecast 
• Surface air pressure  at time of 

forecast 
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4.2 Temporal Fusion Transformer 

4.2.1 Pre-processing 
In the following subchapter we describe the general model set-up and experiments we executed for the 
TFT. Our goal was to assess the performance of the TFT in forecasting BZO phases using the Focal Loss 
function. This loss function was specifically designed for class imbalance (see Background Information – 
Sequence Models). Since our dataset was highly unbalanced, we thought the Focal Loss function would 
be a suitable loss function for our classification task. 

In other fields of study, this function was successful in forecasting highly imbalanced classes without the 
dataset being resampled first. Therefore, to assess the pure performance of Focal Loss in handling class 
imbalance in visibility classes, we decided to not over- or undersample our datasets for training the TFT. 

The TFT expects input data at the same intervals as the desired output. Since we wanted to create a 
forecast with timesteps of 10 minutes, the 1-minute observational data was aggregated to 10 minutes. 
We aggregated the data by taking the mean of all values within each 10-minute interval. 

4.2.2 Model set up 
To train the TFT, we used the TemporalFusionTransformer class in the Pytorch Forecasting libraries to set 
up the model (Paszke et al., 2017). These libraries are useful for our study because they are specifically 
designed for the easy application and training of deep learning models. We also executed hyperparameter 
tuning to find the most optimal set of hyperparameters for each experiment, using the Optuna 
hyperparameter optimization framework (Akiba et al., 2019). Optuna is particularly useful for 
hyperparameter tuning because it is quick and easy to implement. The best hyperparameters were 
defined on the combination that resulted in the lowest loss for performance on the test set. An overview 
of the best hyperparameters in each experiment can be found in Appendix G. For any variables or 
hyperparameters not mentioned in this section, we used default settings of the 
TemporalFusionTransformer class. 

In the TFT, a predictor variables are categorized as either ‘continuous’ (numerical values), ‘categorical’ 
(categories) or ‘static’ (not changing over time). Moreover, a variable can be ‘known’ or ‘unknown’, 
depending on whether the values of this variable are known at the forecast lead time. An example of a 
known feature is ‘time of day’. An overview of all  predictors in our model can be found in Table 4.3. 

The TFT also allows for adding lagged variables as predictors. However, TFT is designed to be more aware 
of temporal dependencies through its attention heads (see: Background Information – Machine Learning). 
As this is the first time Focal Loss is being applied to this context, our aim was to investigate the 
performance of a baseline TFT. Therefore, we were interested in whether this attention heads mechanism 
was sufficiently capable of identifying temporal dependencies without lags.  

The predictor variables differ slightly from the variables we used in the RFC models. For training the TFT 
we followed the predictors used by Wehrli et al. (2024) (Table 4.3), to allow for direct comparison with 
their TFT model. Specifically, grass temperature, 2-hour air temperature anomaly, and 12-hour 
accumulated precipitation are added. Wind direction is no longer considered.  

4.2.3 Experiments 
Experiment 1 – TFT-Focal-Loss 
Our first experiment consisted of fitting the TFT with the Focal Loss function. Focal Loss is not included in 
the Pytorch Forecasting libraries by default. We manually set up the loss function by basing it on the 
MultiHorizonMetric class. The complete code for the Focal Loss function can be found in Appendix F. 



Vera Buis MSc Thesis Meteorology & Air Quality 

35 
 

Experiment 2 – TFT-Weighted 
The Focal Loss function  allows for additional weighting of classes, where class weights can be manually 
specified. In this experiment, we applied weight to less-abundant classes emphasize rare cases, to 
investigate whether this improves the model’s capability of forecasting rare classes. 

We decided to weight classes by either doubling (2), adding a higher order of magnitude (10) or both (20). 
The weights were assigned based on class-wise performance in Experiment 1. We chose this 
straightforward approach, because it makes it easier to observe how the added weighting affected model 
performance. The weights for both horizontal visibility classes and vertical visibility classes are shown in 
Table 4.2. 

Table 4.2: The assigned class weights for experiment 2, per BZO phase, for both horizontal visibility and vertical visibility. 

 

Experiment 3 – TFT- HARMONIE 
Finally, we also experimented with using the TFT as a NWM post-processing technique. Since the 
HARMONIE dataset is a forecast, we can consider them ‘known’ for future timesteps. Therefore,  we 
included HARMONIE variables as known, continuous variables.  

Table 4.3: The predictors for each experiment of the Temporal Fusion Transformer, per experiment and per predictor type. 

 

Target Visibility/BZO Phase Good Marginal A B C D 
Horizontal Visibility 1 2 10 20 10 10 
Vertical Visibility 1 2 10 20 - - 

 Predictors   

Experiment 
Known, 
categorical 

Known, continuous Unknown, continuous 

1 – TFT-Focal-Loss • Season • Hour_Sin 
• Hour_Cos 
• Day_Sin 
• Day_Cos 
• Time_idx 

• 2-m 1-min average air temperature 
• 2-hour air temperature deviation 
• 2-m 1-min average dew point temperature 
• 1-min average grass temperature 
• 2-m 1-min average relative humidity 
• 2-m 1-min average wind speed 
• 1-min average surface air pressure 
• 12-hour precipitation sum 
• Cloud base height at time of observation 

2 – TFT-Weighted Same as Exp. 1 Same as Experiment 1 Same as Experiment 1 
3 – TFT-HARMONIE  Same as Exp. 1 Same as Exp 1. + HARMONIE 

variables: 
• 2-m air temperature at time 

of forecast 
• 2-m dew point temperature 

at time of forecast 
• 10-m wind speed at time of 

forecast 
• Total cloud cover at time of 

forecast 
• 2-m relative humidity at 

time of forecast 
• Surface air pressure at time 

of forecast 

• 1.5-m air temperature at the time of 
observation 

• 1.5-m dew point temperature at the time 
of observation 

• 1.5-m relative humidity at the time of 
observation 

• 2-m 10-min average wind direction 
• 2-m 1-hour average wind speed 
• Hourly global radiation 
• Hourly precipitation amount 
• Air pressure reduced to mean sea level at 

time of observation 
• Cloud base height at time of observation 
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4.3 Evaluation metrics 
We will use several evaluation metrics to assess the models' performance. In this subchapter, we will 
explain each metric, how it is calculated, and what aspect of the model’s performance it represents.  

Many metrics are calculated using a so-called contingency table (Table 4.4). The columns show whether 
an event was observed (o=1) or not observed (o=0). Similarly, the rows indicate whether the event was 
forecasted (f=1) or not forecasted (f=o). Together, these possibilities make up the four cells in Table 4.4. 

Table 4.4: A contingency table. 

The total number of samples N is retrieved by adding all cells together. 

𝑁 = 𝐻 + 𝑀 + 𝐹 + 𝐶𝑁 (4.1) 

Since our models handle multi-class problem, use the ‘One-vs-Rest’ approach for evaluation (Castillo-
Botón et al., 2022; Thomasson, 2023). In this approach, we simplify the evaluation into a binary 
classification for each class. We treat the class of interest as the ‘positive’ class, while all other classes 
are ‘negative’. This way, all metrics are calculated separately for each class. 

4.3.1 Metrics for the Random Forest Classifier 
1. Probability of Detection 

The Probability of Detection, or POD, measures the fraction of actual events that were correctly forecasted 
in a specific class. It indicates the model’s capability of correctly detecting the events within a class. It 
ranges from 0 to 1, 0 indicating the poorest performance and 1 the best possible performance. POD is a 
key quality measure in evaluating meteorological models (Roebber, 2009). The POD is given by:  

𝑃𝑂𝐷 =  
𝐻

𝐻 + 𝑀
 (4.2) 

2. Accuracy 
Finally, accuracy measures how often the model is correct in general, not just considering observed 
cases. It thus also takes into account the ‘correct negatives’ or a correctly forecasted absence of a class. 
Accuracy ranges from 0 to 1, with 0 being the lowest score and 1 being the highest. While it is a useful 
metric for general performance, it is more quickly influenced by imbalanced datasets, since it is easier to 
correctly forecast the absence of a class if it is rarely observed. Accuracy is given by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐻 + 𝐶𝑁

𝑁
 (4.3) 

3. Critical Success Index 
The Critical Success Index, or CSI, is similar to POD in the sense that is also accounts for correct detection 
of observed events. However, it also takes into account both misses and false alarms. This metric 
penalizes the model for forecasting a class when it did not occur, e.g. a false alarm. This index therefore 
provides a more complete overview of the model’s performance. It ranges from 0 to 1, 0 being the worst 
performance and 1 being the best. The CSI is given by: 

  Observed 

  Positive (o = 1) Negative (o = 0) 

Fo
re

ca
st

ed
 

Positive (f = 1) True Positive (Hit, H) False Positive (False Alarm, F) 

Negative (f = o) False Negative (Miss, M) True Negative (Correct Negative, CN) 
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𝐶𝑆𝐼 =
𝐻

𝐻 + 𝑀 + 𝐹
 (4.4) 

4. False Alarm Ratio 
Finally, the False Alarm Ratio solely measures the amount of false alarms relative to the total amount of 
forecasts. It ranges from 0 to 1, 1 being the worst performance and 0 the best. The FAR is given by:  

𝐹𝐴𝑅 =  
𝐹

𝐹 + 𝑀
(4.5) 

4.3.2 Metrics for the Temporal Fusion Transformer 
As the Temporal Fusion Transformer outputs probabilities for each class, we cannot make use of the 
contingency table as easily. A conversion is necessary to compute the metrics that we used for the 
Random Forest Classifier. 

Since the output consists of probabilities for each class, we can label the class with the highest forecasted 
probability as ‘forecasted’. This way, we flatten the output into a deterministic forecast and we can still 
make use of the contingency table to calculate POD, CSI and Accuracy. 

In the case of using 0.5 as a threshold, a probability of 51% is treated equally as a probability of 99%. 
However, this approach does not fully evaluate the quality of the probabilities that the model produces. 
Therefore, we introduce some additional metrics to evaluate this model. 

1. Brier Score 
The Brier Score is a metric specifically designed for probabilistic forecasting. The score penalizes the 
model based on how far the forecasted probabilities are away from the observations. Similar to the 
contingency table, an observed event is denoted by ‘1’ and the absence of the class by ‘0’. The forecasted 
probability lies somewhere between 0 and 1. By calculating the Brier Score, we penalize the model both 
for overconfident, incorrect predictions (observed = 0, forecasted > 0) as well as underconfident correct 
predictions (observed = 1, forecasted < 1). The Brier Score is given by Equation 4.6, where f is the forecast 
probability ranging between 0 and 1, and o is either 1 or 0 depending on whether the class was observed 
or not. A perfect score for the Brier Score is 0. 

𝐵𝑆 =  
1

𝑁
∑ (𝑓𝑖 − 𝑜𝑖)2

𝑁

𝑖=1
 (4.6) 

2. Brier Skill Score 
An additional metric building on the Brier Score is the Brier Skill Score. This score is one of the most 
common evaluation metrics for forecasting (Wilks, 2010). It compares the Brier Score of the model to the 
Brier Score of some type of reference forecast. It provides context on how well the model performs 
compared to a simple forecast. The Brier Skill Score is given by:  

𝐵𝑆𝑆 = 1 − 
𝐵𝑆𝑚𝑜𝑑𝑒𝑙

𝐵𝑆𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 (4.7) 

The reference forecast can be any type of forecast. A common approach that we implemented is to use 
the climatology of the dataset, where the probability of a class is simply the percentage of its occurrence. 
Additionally, we also used a persistence forecast, which uses the occurrence of classes at one timestep 
as the forecast for the following timestep. A BSS above 0 indicates the model performs better than the 
reference, while a BSS below 0 indicates worse performance.  
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5 Results 
This chapter discusses the performance of the RFC and the TFT in forecasting BZO phases based on 
horizontal visibility (subchapter 5.1), RVR (subchapter 5.2) and vertical visibility (subchapter 5.3). We will 
present the evaluation metrics described in subchapter 4.3 to assess the models’ performances. We 
present the evaluation metrics of all experiments in one table. Plots per metric over all lead times can be 
found in Appendix H. We also compare our findings with those from earlier research. 

5.1 Horizontal Visibility 
In this subchapter we describe the performance of the RFC and the TFT that forecasted BZO phases based 
on horizontal visibility. We assess the RFC experiments ‘RFC-Direct’, ‘RFC-Recursive’ and ‘RFC-
HARMONIE’, followed by the TFT experiments ‘TFT-Focal-Loss’, ‘TFT-Weighted’ and ‘TFT-HARMONIE’.  

5.1.1 Random Forest Classifiers 
We start by discussing the performance of RFCs in forecasting BZO phases based on horizontal visibility. 
We assess the performance using the POD, Accuracy, CSI, FAR (Table 5.1) and the confidence interval of 
POD (Figure 5.1 and Figure 5.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1: The Probability of Detection (POD), Accuracy, Critical Success Index (CSI) and False Alarm Ratio (FAR) for the Random 
Forest Classifier forecasting BZO phases based on horizontal visibility, for all three RFC-experiments. First value is the score at 
the first lead time (10 minutes for experiment 1 and 2, 1 hour for experiment 3). Second value in brackets is the average score over 
all lead times up to 4 hours. The best value for the specific category, over all experiments and both locations, is  given in green/bold. 
The worst value for the specific category, over all experiments and both locations, is given in orange/italic.  
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Performance per Class 
The best-performing class over all experiments is ‘Good’, (initial POD of 0.921 or higher, initial Accuracy 
of 0.947 or higher, initial CSI of 0.752 or higher), closely followed by ‘Marginal’ (initial POD of 0.709 or 
higher, initial Accuracy 0.752 or higher, initial CSI of 0.328 or higher). These POD scores were similar to 
scores found by Bartok et al. (2022), who achieved an overall POD of 0.84 for a model nowcasting visibility 
conditions. Even though the dataset was balanced, our RFC models still seem biased towards the 
majority classes, because scores of other classes are substantially lower. After ‘Good’ and ‘Marginal’, the 
order classes in terms of initial POD is ‘D’ (0.382 – 0.737), ‘A’ (0.226 – 0.659), ‘C’ (0.275 – 0.612) and finally 
‘B’ (0.059 – 0.323). These scores are somewhat lower than POD scores found in other research on 
independent decision tree forecasting (e.g. POD: 0.57 – 0.77 (Dewi et al., 2020); 0.885 (Liu et al., 2024); 
0.733 – 0.848 (Ohashi & Hara, 2024). This bias towards majority classes is likely caused by the broader 
range of values and conditions in majority classes, making forecasts in these classes easier for the model.  

Similar patterns are observed in the other metrics, showing substantially lower performance for class ‘B’ 
than other classes. For example, the FAR for class ‘B’ is especially high, ranging from 0.336 to 0.871 over 
all experiments. This order of performance does not follow the natural order of the classes, indicating the 
model finds it more difficult to forecast intermediate classes (like ‘B’) than extreme cases, like those in 
class ‘D’. This suggests there might be a stronger correlation between atmospheric conditions and 
visibility during those extreme cases. A feature correlation analysis could confirm or refute this 
hypothesis. Castillo-Botón et al. (2022) also trained a RFC to forecast 5 visibility classes and obtained 
POD scores of 0.87, 0.78, 0.41, 0.31 and 0.93, respectively. This indicates that their model also struggled 
to forecast intermediate classes but found extreme low-visibility cases relatively easy to detect. The 
patterns in our results were similar to this finding.  

We can conclude that RFC models struggle to forecast rare, intermediate classes in horizontal visibility, 
underperforming slightly to earlier literature, and are more successful in forecasting extreme low-visibility 
classes and majority classes. The latter is likely partially caused by a residual bias towards majority 
classes that remains even after balancing. 

Performance per Experiment 
We found that the initial POD, CSI and Accuracy scores are generally higher than the average scores over 
all lead times. This is expected behavior for a forecast, as uncertainty increases at longer lead times. 
However, there are notable differences between the experiments. Specifically, RFC-Direct has much 
lower average POD scores compared to the initial POD than the two other experiments. For example, the 
average POD for class A, West was 0.189 in RFC-Direct and 0.305 in RFC-Recursive, even though both 
experiments had similar initial scores (0.616 and 0.659 respectively). This was a surprising result, as we 
expected more propagating errors in the recursive model, but rather this model showed better 
performance at longer lead times. A notable observation was that the POD and CSI  showed a spike in the 
second timestep for the recursive models, which we could not explain (Appendix H, Figures H.7 and H.9).  

Additionally, we found higher initial results for other metrics in the recursive model (e.g. CSI, Marginal, 
West: 0.674, versus RFC-Direct: 0.532; CSI, class B, Center: 0.277 versus RFC-Direct: 0.135). These 
metrics showed a similar performance decrease over longer lead times in both experiments (e.g. CSI 
Good, Center: 0.876 to 0.620 in RFC-Direct, 0.935 to 0.594 in RFC-Recursive). This indicates that only the 
detection rate decreases more in RFC-Direct over time, while the number of correct negatives and false 
alarms decreases similarly in both experiments. To summarize, RFC-Recursive performs best in 
predicting visibility initially and also shows higher detection rates than RFC-Direct over longer lead times. 
Initial scores for RFC-Direct are slightly lower, and detection rates decrease faster over time than for RFC-
Recursive (see also plots over lead times; Appendix H: Figures H.1 – H.12, ). 
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For RFC-HARMONIE, scores decrease the least and sometimes even slightly increase over longer lead 
times (e.g. POD Class C: 0.275 to 0.290; CSI Class B: 0.046 to 0.057; see Appendix H: Figures H.13 – 
H.15). This aligns with the stable performance of the HARMONIE model over 4 hours (Appendix B). Still, 
RFC-HARMONIE's performance is higher than the HARMONIE model (see Appendix B), indicating the 
post-processing did improve HARMONIE output. However, generally, RFC-HARMONIE performs worse 
than the other two RFC experiments and also underperforms compared to earlier research in the low-
visibility classes (POD low-visibility 0.057 – 0.382, versus POD 0.13-0.72 (Yu et al., 2021); POD 0.338 
(Thomasson, 2023)). None of the category’s best values are found in this experiment (no bold green 
values), and there are 5 out of 24 worst scores. Most striking is the model's performance in RFC-
HARMONIE for class ‘B’. Its POD (0.059) decreased to less than half of the first two experiments (RFC-
Direct: 0.163, RFC-Recursive: 0.323), similar to the CSI (0.046; RFC-Direct 0.135, RFC-Recursive: 0.277).  

Relatively, the performance of low-visibility classes decreased much more than class ‘Good’, which 
scores were barely affected (e.g. POD 0.938 to 0.921, Accuracy 0.976 to 0.948). Thomasson (2023), who 
also post-processed NWM data using ML, also recognized this behavior. His model showed a lower POD 
for fog-like classes only (0.227) than the general model performance (0.338). There are very few 
exceptions in our model, where RFC-HARMONIE showed higher results (e.g. Accuracy Marginal: 0.750 
versus RFC-Direct: 0.671; FAR class D: 0.586 versus RFC-Recursive: 0.592; FAR class C: 0.623 versus 
RFC-Recursive: 0.756). However, these differences are very minimal and the general model performance 
of RFC-HARMONIE is lower than the other experiments. Therefore, we can conclude that including 
HARMONIE data into the RFC model did not improve its performance, and that independent versions of 
the RFC perform just as well, or better. 

Performance per Location 
POD and CSI scores of BZO phases ‘Good’, ‘Marginal’, ‘B’ and ‘C’, are generally higher in BZO Center in both 
RFC-Direct and RFC-Recursive. Oppositely, class ‘A’ and ‘D’ score higher in BZO West (e.g. RFC-Direct, 
initial: West vs Center: 0.616 versus 0.505, 0.653 versus 0.563 respectively). This is likely because there 
were more training samples of these classes in BZO West. In terms of Accuracy and FAR, these patterns 
are slightly less distinct. For example, the Accuracy for class ‘B’ and ‘C’ is actually higher in BZO West in 
RFC-Direct (Class B: 0.881 (West) and 0.865 (Center); Class C: 0.848 (West) and 0.811 (Center)). 
Similarly, in terms of FAR, some cases also show better performance of class ‘B’ and ‘C’ in BZO West (e.g. 
RFC-Direct, class C: 0.478 (West) and 0.560 (Center)).  

Despite this, metrics generally portray a similar pattern in location-wise performance. BZO West has 
higher performance in classes ‘A’ and ‘D’, while BZO Center performs better in the other classes. It could 
mean that these classes are more distinctly defined, are less affected by noise and exhibit fewer short-
term changes over time at BZO Center, making it easier for the model to predict these classes over time. 
However, we did not find evidence of this in the class distributions (Appendix C). We hypothesize that the 
intermediate classes ‘B’ and ‘C’ are coupled to more distinct conditions in BZO Center, because it 
experiences less fluctuations in meteorological variables as it is in a more urbanized area than BZO West. 
Oppositely, we hypothesize that BZO West performs better in class ‘D’, which is often related to thick fog. 
Thick fog is more likely to occur in BZO West because of its location (see Background), which is why we 
suspect the model finds it easier to detect this extreme class here.  

A key takeaway is that the RFC models show distinct differences in performance for the two locations 
‘BZO West’ and ‘BZO Center’, whether that may be due to their geographical properties or due to 
differences in the relative occurrence of BZO phases. This indicates it is useful to make separate forecasts 
for the two locations, and that a single forecast for the airfield would possibly miss out on nuances in fog 
occurrence between the locations. 
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Detection Certainty 
 

 

Figure 5.1: The POD (Y-axis) for phase ‘Good’ (a), ‘Marginal ‘ (b), ‘A’ (c), ‘B’ (d), ‘C’ (e), and ‘D’ (f) for the direct Random Forest 
Classifier (RFC-Direct) forecasting BZO phases based on horizontal visibility over the lead time of 4 hours (X-axis). Both  locations 
BZO West (blue) and BZO Center (orange) are shown. The shaded areas show the 95% confidence interval.  

Figure 5.2: The POD (Y-axis) for phase ‘Good’ (a), ‘Marginal ‘ (b), ‘A’ (c), ‘B’ (d), ‘C’ (e), and ‘D’ (f) for the recursive Random Forest 
Classifier (RFC-Recursive) forecasting BZO phases based on horizontal visibility over the lead time of 4 hours (X-axis). Both  
locations BZO West (blue) and BZO Center (orange) are shown. The shaded areas show the 95% confidence interval.  
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The confidence interval of the POD (Figure 5.1, 5.2) is generally narrowest for class ‘Good’ with its widest 
POD range slightly over 0.1. Class ‘Marginal’ and ‘D’ show slightly wider intervals, both ranging somewhere 
between 0.1 and 0.2. This supports our earlier observation that the RFC models find extreme cases easier 
to predict than other low-visibility classes. Classes ‘A’ and ‘C’ show the widest interval of about 0.2 and 
0.3 respectively, reflecting less certainty from the model. Finally, class ‘B’ exhibits a spiky and inconsistent 
pattern. It indicates the model is struggling to find a stable pattern for this class. The recursive model also 
shows a distinct oscillating behavior in class ‘A’ and ‘B’, which indicates that the model struggles to 
distinguish between these classes, likely finding it difficult to classify edge cases. 

The confidence intervals are narrower at shorter lead times for RFC-Recursive, but widen more over the 
longer lead times than RFC-Direct. This observation aligns with the generally lower performance of RFC-
Recursive over longer lead times in terms of POD, which we found above, and also aligns with patterns 
that one would expect from a recursive model, as uncertainty increases in every future timestep. 
Moreover, a notable difference is the confidence interval in class ‘D’, which is much narrower in RFC-
Direct than in RFC-Recursive, especially for BZO Center. Despite the higher POD scores in RFC-Recursive 
the model still appears to have large uncertainty modelling class D, which contradicts our hypothesis that 
the RFC models find extreme cases easier to predict. 

Generally, the confidence intervals are narrower in location BZO West. This is most apparent in classes 
‘Marginal’, ‘A’ in RFC-Direct and ‘A’, ‘B’, and ‘D’ for RFC-Recursive. For low-visibility classes, it could 
indicate that the slightly higher abundance of data in BZO West improved the model's confidence. Another 
possible location is that BZO Center experiences a slightly more diverse range of conditions, specifically 
in classes like ‘Marginal’ and ‘A’. If conditions for low-visibility are more sharply defined in BZO West, it 
raises the model’s confidence in forecasts in this area. We already hypothesized this to be the case earlier, 
and a feature correlation analysis would give more insight in this.  

The main takeaway from this is that even though recursive models generally display higher detection 
rates, their uncertainty does increase more over longer lead times. Oscillating behavior in intermediate 
classes also supports our earlier finding that the models struggle in forecasting intermediate classes. 
Moreover, uncertainty is generally lower in BZO West, which suggests that the mechanisms for fog 
formation are more clear to the model in this location. 

5.1.2 Temporal Fusion Transformers 
In the following section we will discuss the performance of the TFT fitted with a Focal Loss function in 
forecasting BZO phases based on horizontal visibility for the experiments ‘TFT-Focal-Loss’, ‘TFT-Weighted’ 
and ‘TFT-HARMONIE’. We will assess the performance of the models as a deterministic model using the 
POD and CSI, and as a probabilistic model using Brier Score, BSS Climatology and BSS Persistence. 

Performance per Class 
When assessing the TFT models as a deterministic model a notable finding is the low performance of low-
visibility classes. We leave out scores of 0.0, which occur when a class never received the highest 
probability, and therefore was never forecasted in the deterministic forecast. Still, we find very low scores 
for these classes among all experiments (e.g. POD class B, TFT-Weighted: 0.013; POD class C, TFT-Focal-
Loss: 0.006). Oppositely, class ‘Good’ receives high scores, similar to scores we found in the RFC 
experiments (e.g. POD 0.934 to 0.993, CSI 0.922 to 0.977). For class ‘Marginal’, scores of TFT-Focal-Loss 
are similar to the RFC experiments (POD around 0.7 and CSI around 0.6), but TFT-Weighted and TFT-
HARMONIE show lower values (POD 0.381 for TFT-Weighted, CSI 0.355 and 0.257 for TFT-Weighted and 
TFT-HARMONIE respectively). The high POD and CSI scores for classes ‘Good’ and ‘Marginal’ indicate the 
model is likely biased towards these classes since the dataset is not balanced.  
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However, we observe a strikingly different pattern when we assess the model’s performances as a 
probabilistic model, using Brier Scores. Regarding the Brier Score, the best-performing classes are 
classes ‘B’, ‘C’ and ‘D’ with scores between 0.001 and 0.005. For context, the only TFT that has been 
applied to visibility forecasting, as a regressor, obtained a Brier Score of 0.01 for visibility below 1000 
meters (Wehrli et al., 2024). Our model outperforms this TFT in the low-visibility classes. Oppositely, the 
worst performing classes in our TFT are classes ‘Good’ and ‘Marginal’ with scores ranging from 0.03 to 
0.110 and 0.04 to 0.077, respectively. Even though these scores are above 0.01, they are still well below 
Brier Scores obtained by other visibility classifiers (e.g. 0.125 – 0.83 (Ohashi & Hara, 2024)). Therefore, 
we can say that our TFT models are very capable of forecasting visibility probabilities, specifically for the 
low-visibility classes.  

Table 5.2: The Probability of Detection (POD), Critical Success Index (CSI) and Brier Score, Climatological Brier Skill Score (BSS 
Climatology) and Persistence Brier Skill Score (BSS Persistence) for the Temporal Fusion Transformer forecasting BZO phases 
based on horizontal visibility, for all three TFT-experiments. First value is the score at the first lead time (10 minutes for experiment 
1 and 2, 1 hour for experiment 3). Second value in brackets is the average score over all lead times up to 4 hours. The best value 
for the specific category, over all experiments, is given in green/bold. The worst value for the specific category, over all experiments, 
is given in orange/italic. Values of 0.0 excluded.  
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We can conclude that TFTs with a Focal Loss function are highly biased towards majority classes ‘Good’ 
and ‘Marginal’ in the deterministic form. However, as a probabilistic model, the models are very capable 
of forecasting visibility categories, specifically the low-visibility classes.  

Performance per Experiment 
Even though Brier Scores indicate very high performance of the TFT models, the models do not always 
show skill when compared to a climatological or persistence forecast. In this case, we find large 
differences in the different experiments. The BSS climatology is positive in all classes for TFT-Focal-Loss, 
indicating better performance than a climatological forecast. However, the BSS climatology is only 
positive for a few classes in TFT-Weighted (Marginal, initial: 0.011; C, initial: 0.013) and TFT-HARMONIE 
(Good, initial: 0.0183; Marginal, initial: 0.041; B, initial: 0.015; B, average: 0.011). These BSS values are 
generally lower than the BSS values for the HARMONIE-QRF forecast, especially at short lead times (see 
Background Information – Low Visibility Procedures at Amsterdam Airport Schiphol; class Marginal 0.306 
– 0.689, class A 0.188 – 0.661, class B 0.157 – 0.643, class C 0.007 – 0.403). The only class that showed 
better skill than the HARMONIE-QRF model was class ‘D’, whose scores ranged from -0.114 to 0.074 for 
the HARMONIE-QRF model but were higher in our TFT (0.106 to 0.181). Additionally, the BSS persistence 
is generally negative in all our experiments, indicating the TFT models perform worse than a persistence 
forecast. However, in TFT-HARMONIE, there are three classes with a positive BSS Persistence: ‘A’ (average, 
0.282), ‘B’ (average, 0.357) and ‘C’ (average, 0.331). 

Other scores also show apparent differences between the experiments. TFT-Weighted generally shows 
the lowest performance across all metrics and classes. This suggests that adding weights to the 
categories in the TFT disturbed the ability of the model to detect natural patterns in class occurrence. The 
weights may have increased the model’s confidence in low-visibility scores too much, resulting in the 
lowest Brier Scores for class ‘A’ (0.013/0.014), ‘B’ (0.004) and ‘C’ (0.005) in this experiment. TFT-Focal-
Loss shows the highest performance as a deterministic forecast (highest POD/CSI values) and also shows 
the best skill compared to a climatological forecast. However, TFT-HARMONIE seems to have improved 
Brier Scores of intermediate classes ‘A’, ‘B’ and ‘C’, as well as improved the model’s skill compared to the 
persistence forecast in these classes. Introducing HARMONIE data seems to have improved the model’s 
ability to distinguish between intermediate classes.  

To summarize, TFT models with a Focal Loss function show high performance as a probabilistic model but 
low performance as a deterministic model. As a deterministic model, the models are highly biased 
towards majority classes. Adding weights to the classes did not improve performance. Adding HARMONIE 
data slightly improved the performance of intermediate classes ‘B’, ‘C’, and ‘D’.  
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5.2 Runway Visual Range 
The following subchapter describes the performance of the RFC that forecasted BZO phases based on 
RVR. We only discuss RFC since there was insufficient data to train the TFT on RVR. Introducing RVR as a 
target resulted in fewer data points for low-visibility classes, so class ‘C’ and ‘D’ were combined. RVR data 
was only available below 1500 meters, so we will focus our analysis on the low-visibility classes. 

 

Performance per Class  
First, we can compare the scores of these experiments to those we performed on horizontal visibility 
earlier. Scores (POD, CSI and Accuracy) for class ‘Good’ and ‘Marginal’ are similar (e.g. POD West: initial 
0.920 to 0.921, average 0.829 to 0.810 (RFC-Direct); initial 0.973 to 0.972, average 0.574 to 0.564 (RFC-
Recursive)). For ‘A’, performance greatly improved (e.g. POD Center: initial 0.505 to 0.796, average 0.228 
to 0.518 (RFC-Direct); initial 0.586 to 0.811, average 0.299 to 0.386 (RFC-Recursive)). For class ‘B’ scores 
also improved (e.g. POD West: initial 0.108 to 0.300, average 0.018 to 0.066 (RFC-Direct); initial 0.260 to 
0.422, average 0.280 to 0.392 (RFC-Recursive). However, class ‘A’ and ‘B’ did show an increase in FAR 
when RVR was introduced (e.g. FAR Center, RFC-Recursive: 0.490 to 0.526 (class ‘A’) 0.336 to 0.616 (class 
‘B’)). 

Introducing RVR as a target resulted in a different performance order than for horizontal visibility 
experiments. In terms of POD, the best-performing classes are still ‘Good’ (0.547 – 0.979) and ‘Marginal’ 
(0.460 – 0.917). However, in the case of RVR, these classes are followed by ‘A’ (0.382 – 0.734), ‘B’ (0.066 
– 0.422) and ‘C’ (0.012 – 0.540), resembling the natural order of the classes. We no longer observe a 
substantially higher detection rate of extreme low-visibility cases, which are now part of class ‘C’. We 
hypothesize that since RVR data included much fewer cases of low-visibility cases, the model did not have 
sufficient samples to accurately recognize patterns for these cases, resulting in lower detection rates for 
class ‘C’ (0.012 – 0.540) than class ‘D’ in the horizontal visibility experiments (0.140 – 0.737).  

Table 5.3: The Probability of Detection (POD), Accuracy, Critical Success Index (CSI) and False Alarm Ratio (FAR) for the Random 
Forest Classifier forecasting BZO phases based on RVR, for the first two RFC-experiments. First value is the score at the first lead 
time (10 minutes). Second value in brackets is the average score over all lead times up to 4 hours. The best value for the specific 
category, over all experiments and both locations, is  given in green/bold. The worst value for the specific category, over all 
experiments and both locations, is given in orange/italic.  
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In terms of the other metrics, e.g. for FAR, the order of performance slightly changes to ‘Good’ (0.025 – 
0.278), ‘Marginal’ (0.187 – 0.559), ‘C’ (0.239 – 0.773), ‘A’ (0.445 – 0.637) and ‘B’ (0.494 – 0.839). 
Interestingly, this pattern is similar to the pattern we observed in all metrics for horizontal visibility. 
Therefore, introducing RVR only resulted in a different class order of detection rate but did not influence 
correct negatives or false alarms as much.   

Performance per Experiment 
The recursive model shows the highest performance overall. 16 out of 20 ‘best values’ are found in RFC-
Recursive, and with few exceptions, all metrics score better in this experiment. This is similar behavior to 
what we observed in the horizontal visibility models. Introducing RVR, therefore, did not influence the 
performance of the direct and recursive RFCs relative to each other. 

Performance per Location 
In classes ‘Good’, ‘Marginal’ and ‘A’, there are minimal differences in initial scores between the two 
locations. In the horizontal visibility experiments, differences were more apparent. RVR appears to vary 
less over the two locations, causing similar performance in the two locations. This consistency between 
the locations likely results from the adjustable runway light luminance that is included in RVR. For 
example, if visibility is lower in one location (e.g. BZO West), the runway lights are likely increased in 
brightness, while in better visibility conditions (e.g. BZO Center) lights are adjusted less. This reduced the 
relative difference in RVR between the two locations. 

This hypothesis holds for the first three classes, but we observe a different pattern for classes ‘B’ and ‘C’. 
These classes both consistently perform better in area West (e.g. RFC-Recursive, POD, class B: 0.422 
(West) versus 0.346 (Center); class C: 0.467 (West) versus 0.149 (Center); FAR class B 0.494 (West) 
versus 0.616 (Center). This is likely caused by the more persistent fog in BZO West (see Appendix E). If 
visibility is extremely low in one location (e.g. BZO West), runway lights will reach their maximum 
brightness. As a result, the difference in RVR between the locations will become more pronounced, and 
the model performs better in more persistent foggy conditions at BZO West. 

Detection Uncertainty 
 

 

 

 

 

 

 

 

 

 

 

 Figure 5.3: The POD for phase ‘Good’ (a), ‘Marginal ‘ (b), ‘A’ (c), ‘B’ (d) and ‘C’ (e) for the direct Random Forest Classifier 
(Experiment 1) forecasting BZO phases based on RVR. Both  locations BZO West (blue) and BZO Center (orange) are shown. The 
shaded areas show the 95% confidence interval.  
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The confidence intervals of the RVR experiments (Figure 5.3 and 5.4) show similar patterns over the lead 
time as horizontal visibility experiments. The difference between the locations is less apparent than in 
horizontal visibility for classes ‘Good’, ‘Marginal’ and ‘A’, which we also observed above. An interesting 
difference, however, is the confidence in predictions at BZO Center for RFC-Direct. The model shows 
spikey and inconsistent behavior. Classes ‘A’ and ‘B’ also show a more prominent oscillating behavior than 
in horizontal visibility. We hypothesize that the smoother nature of the RVR dataset (due to the adjustable 
runway light luminance) made it more difficult for the model to distinguish intermediate classes, 
especially for edge cases. Additionally, we observe a larger difference in the confidence interval between 
BZO Center and BZO West for class ‘C’. The confidence interval this class is much wider compared to that 
of BZO West than in the previous experiments. After introducing RVR, there were very few extreme low-
visibility samples left, which is why we merged classes ‘C’ and ‘D’. This was mostly the case in BZO Center, 
since there was already a lower abundance of low-visibility cases in this location. We hypothesize the 
further decrease in samples caused the higher uncertainty of the models in BZO Center. 

To summarize, RVR mainly caused the RFCs to be more confused about edge cases in intermediate 
classes since the data was more smoothed in these ranges. Additionally, it increased the difference in 
uncertainty between BZO West and BZO Center by further decreasing the amount of extremely low 
visibility samples. 

 

 

 

 

Figure 5.4: The POD for phase ‘Good’ (a), ‘Marginal ‘ (b), ‘A’ (c), ‘B’ (d) and ‘C’ (e) for the recursive Random Forest Classifier 
(Experiment 2) forecasting BZO phases based on RVR. Both  locations BZO West (blue) and BZO Center (orange) are shown. The 
shaded areas show the 95% confidence interval.  
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5.3 Vertical Visibility 
This final subchapter will discuss the results of the RFC and TFT in forecasting BZO phases based on 
vertical visibility. Vertical visibility is only determining for classes ‘Good’, ‘Marginal’, ‘A’ and ‘B’, so results 
are only plotted for these classes (see Background Information – Low Visibility Procedures at Amsterdam 
Airport Schiphol).  

5.3.1 Random Forest Classifiers 
The following sections present and discuss the performance of RFC’s forecasting BZO phases based on 
vertical visibility. We discuss the three experiments ‘RFC-Direct’, ‘RFC-Recursive’ and ‘RFC-HARMONIE’ 
and assess the performance with the POD, Accuracy, CSI, FAR and the confidence interval of POD.  

 

Performance per Class 
The highest-performing class was ‘Good’ (POD: 0.324 – 0.964, Accuracy; 0.541 – 0.941, CSI: 0.308 – 
0.822, FAR: 0.151 – 0.299), followed by ‘Marginal’ (POD: 0.055 – 0.775, Accuracy: 0.718 – 0.952, CSI: 
0.041 – 0.654, FAR: 0.196 – 0.932), ‘B’ (POD: 0.118 – 0.962, Accuracy: 0.553 – 0.947, CSI: 0.100 – 0.910, 
FAR: 0.056 – 0.775) and finally ‘A’ (POD: 0.046 – 0.775, Accuracy: 0.677 – 0.927, CSI: 0.031 – 0.654, FAR: 
0.195 – 0.955). The performance of the models is generally lower than the performance of RFCs in 
forecasting horizontal visibility and RVR, and with that automatically also lower than findings from other 
research.  Especially at longer lead times, some scores are exceptionally low (e.g. CSI, RFC-Recursive, 
class A, Center: 0.031; POD, RFC-Direct, class A, West: 0.046; see also Appendix H: Figures H.47 – H.49).  

Table 5.4: The Probability of Detection (POD), Accuracy, Critical Success Index (CSI) and False Alarm Ratio (FAR) for the Random 
Forest Classifier forecasting BZO phases based on vertical visibility, for all three RFC-experiments. First value is the score at the 
first lead time (10 minutes for experiment 1 and 2, 1 hour for experiment 3). Second value in brackets is the average score over all 
lead times up to 4 hours. The best value for the specific category, over all experiments and both locations, is  given in green/bold. 
The worst value for the specific category, over all experiments and both locations, is given in orange/italic. Experiment 3 results are 
given under location ‘Center’, since the AWS measurement station is located in BZO area Center. 
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This order does not match the natural order of the classes, as intermediate class ‘A’ is the worst-
performing class. We also saw this pattern in our horizontal visibility and RVR experiments, where 
intermediate classes performed worse than the extremely low-visibility classes. These findings indicate 
that it is not only fog formation that makes intermediate classes challenging to forecast for the RFCs, but 
rather, this pattern is present for all three targets.  

Performance per Experiment 
RFC-Recursive clearly outperformed other experiments in forecasting horizontal visibility and this is also 
the case vertical visibility. 12 out of 16 ‘best values’ are found in the RFC-Recursive experiment and in 
many cases scores in this experiment are better than in RFC-Direct. An important note, however, is that 
false alarms in this experiment are very high, especially at longer lead times (Center, Marginal: 0.932; 
Center A: 0.955). Moreover, the average scores over longer lead times decline quickly in RFC-Recursive 
and end up being lower than RFC-Direct (e.g. CSI class ‘Marginal’ in Center; 0.041 (RFC-Recursive) versus 
0.173 (RFC-Direct)). This pattern is different than what we observed in the horizontal visibility and RVR 
experiments, where RFC-Recursive scored well initially as well as over longer lead times. It indicates the 
recursive RFCs are more capable of forecasting horizontal visibility, and thus fog, than vertical visibility at 
longer lead times.  

However, in the case of vertical visibility, RFC-HARMONIE shows much better results. Even though it only 
contains 2 out of 16 ‘best values’, its scores are much closer to the RFC-Recursive experiment than in 
horizontal visibility and RVR. At longer lead times its scores are often better. For example, the average CSI 
for class ‘B’ is 0.510, while it is 0.222 in RFC-Recursive and 0.100 in RFC-Direct. This implies that including 
NWM data does aid the RFC model in forecasting vertical visibility over longer lead times. 

Performance per Location 
We found that the models performed better in location ‘Center’ than in ‘West’  (e.g. POD RFC-Direct: Good 
0.937 (West) versus 0.964 (Center), Marginal 0.567 (West) versus 0.698 (Center); FAR RFC-Recursive 
Good 0.215 (West) versus 0.160 (Center), B 0.079 (West) versus 0.056 (Center)). This is a surprising 
result. Vertical visibility is mainly influenced by clouds, and clouds are generally less related to small-
scale variations in conditions than fog (Bony et al., 2015). Therefore, one would not expect vertical 
visibility to differ greatly between the two locations. We also did not find differences in the occurrence of 
BZO phases based on vertical visibility between the locations (see Appendix E: Figure E.2). A likely 
explanation is that meteorological variables, apart from visibility, were more variable in BZO West because 
of its rural location. The higher variance in the dataset could cause lower performance of the RFC because 
it is not able to generalize relationships between the variables and visibility as well. A more extensive 
dataset analysis could confirm this. The main takeaway from this is that the difference in model 
performance between the two BZO locations is not limited to the modelling of fog, but also applies to 
vertical visibility. 
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Detection Certainty 

 

 

Figure 5.5: The POD for phase ‘Good’ (a), ‘Marginal ‘ (b), ‘A’ (c), and ‘B’ (d) for the direct Random Forest Classifier (Experiment 1) 
forecasting BZO phases based on vertical visibility. Both  locations BZO West (blue) and BZO Center (orange) are shown. The 
shaded areas show the 95% confidence interval.  

Figure 5.6: The POD for phase ‘Good’ (a), ‘Marginal ‘ (b), ‘A’ (c), and ‘B’ (d) for the recursive Random Forest Classifier (Experiment 
2) forecasting BZO phases based on vertical visibility. Both  locations BZO West (blue) and BZO Center (orange) are shown. The 
shaded areas show the 95% confidence interval.  
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The confidence intervals of the POD of RFC-Direct are generally wide across all lead times, indicating 
substantial uncertainty in the model. For class ‘A’, the intervals are specifically wide at shorter lead times. 
Oppositely, in RFC-Recursive, the intervals are narrow, but POD scores are generally low, specifically for 
class ‘A’ in BZO Center and class ‘Marginal’. The narrow interval indicates the model is confident about 
predictions, even though they are incorrect. High confidence in incorrect predictions can occur when an 
ML model uses features that are not representative of the target. In this case, this means that the 
previously classified visibility class is generally not representative of the class in the next timestep. This is 
somewhat to be expected, as clouds, and with that vertical visibility, usually show patterns on larger 
temporal scales than 10 minutes (Bony et al., 2015). An interesting finding is that the recursive RFC is 
capable of detecting class ‘B’, especially in BZO Center (average POD 0.946). We could not find an 
explanation for this pattern. To summarize, the direct RFCs are relatively uncertain in their predictions, 
while recursive RFCs are confident in predictions but are often incorrect. 

5.3.2 Temporal Fusion Transformers 
Finally, we will discuss the performance of the TFTs in forecasting BZO phases based on vertical visibility. 
Similar to the horizontal visibility subchapter, we discuss the experiments ‘TFT-Focal-Loss’, ‘TFT-Weighted’ 
and ‘TFT-HARMONIE’. We assess deterministic performance using the POD and CSI, and assess the 
probabilistic forecasts using Brier Score, BSS Climatology and BSS Persistence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.5: The Probability of Detection (POD), Critical Success Index (CSI), Brier Score, Climatological Brier Skill Score (BSS 
Climatology) and Persistence Brier Skill Score (BSS Persistence) for the Temporal Fusion Transformer forecasting BZO phases 
based on vertical visibility, for all three TFT-experiments. First value is the score at the first lead time (10 minutes for experiment 1 
and 2, 1 hour for experiment 3). Second value in brackets is the average score over all lead times up to 4 hours. The best value for 
the specific category, over all experiments, is given in green/bold. The worst value for the specific category, over all experiments, 
is given in orange/italic. 
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Performance per Class 
As a deterministic forecast, the best-performing class by far is class ‘Good’, outperforming all other 
classes in both metrics in both TFT-Focal-Loss and TFT-HARMONIE. Only in TFT-Weighted, the POD of 
class ‘B’ is substantially higher (0.982 versus 0.543 for ‘Good’) but the CSI is still much lower for class ‘B’ 
(0.013 versus 0.543 for ‘Good’). Class ‘A’ was not forecasted in the deterministic forecast at all. While 
class ‘B’ shows higher POD values than ‘Marginal’ (e.g. 0.982 versus 0.002 in TFT-Weighted); the opposite 
is true for the CSI (0.030 for class ‘B’ versus 0.115 for ‘Marginal’ in TFT-HARMONIE). This implies that the 
model seems capable of detecting class ‘B’, especially in the weighted experiment, but introduces many 
false alarms for this class, reflected in low CSI scores.  

For the probabilistic forecast, patterns are different. The best-performing class is ‘A’ (Brier Score 0.004 – 
0.008), followed by ‘B’ (0.016 – 0.043), ‘Marginal’ (Brier Score 0.043 – 0.080) and finally ‘Good’ (Brier Score 
0.085 – 0.435). Class ‘B’ does perform slightly worse than ‘Marginal’ in terms of Brier Skill Scores. Low-
visibility categories perform best, which we also saw in the horizontal visibility experiments. Even though 
the Brier Scores are slightly higher than horizontal visibility, class ‘A’ outperforms the TFT by Wehrli et al. 
(2024) across all experiments, and all reduced visibility classes perform better than the Brier Score found 
by Parde et al. (2022) (0.13). However, compared to earlier experiments on horizontal visibility and RVR, 
the patterns in class-wise performance are less distinct.  

Performance per Experiment 
The order of performance differs greatly between the different experiments. The most prominent 
difference is that of class ‘B’ in TFT-Weighted. Introducing class weights has made the model overly biased 
towards this class, resulting in high detection rates, but also a high number of false alarms. However, for 
other classes, the effect of weights is different. For classes ‘Good’ and ‘Marginal’, both POD and CSI scores 
worsened from TFT-Focal-Loss to TFT-Weighted. This can be explained by the fact that class ‘B’ received a 
much higher weight (20) than class ‘Good’ (1) and ‘Marginal’ (2), causing the model to assign lower 
probabilities to these classes, resulting in lower deterministic performance.  

We observe similar patterns in the Brier Score; which are higher in TFT-Weighted than in TFT-Focal Loss 
for classes ‘Good’ (0.407 versus 0.170), ‘A’ (0.007 versus 0.004) and ‘B’ (0.256 versus 0.053). Brier Skill 
Scores all also lowered in the TFT-Weighted experiment. The only exception is class ‘Marginal’, which 
performed slightly better in TFT-Weighted in terms of Brier Score (0.051 versus 0.067), BSS Climatology (-
4.699 versus -6.423) and BSS Persistence (-8.353 versus -13.775). The weights appear to have very 
slightly improved the accuracy of probabilities for ‘Marginal’. This suggests that weights do not necessarily 
always have a negative impact on model performance. Experimenting with different class weights could 
result in better performances for other classes. 

The most prominent result of these experiments is the performance of TFT-HARMONIE. This experiment 
contains 14 out of 20 best values over all experiments. Moreover, it is the only experiment that has positive 
skill scores for some experiments (e.g. BSS Climatology Good: 0.196, Marginal: 0.138, B: 0.050; BSS 
Persistence A: 0.200). In terms of the CSI, the model also scores best over all experiments, both at short 
as well as longer lead times. We already saw a relatively better performance of RFC-HARMONIE for 
vertical visibility than for horizontal visibility, and this is even more prominent for the TFT. From this, we 
can conclude that using HARMONIE data as input for the TFT is useful when forecasting vertical visibility.  

To summarize, introducing weights generally worsened performance of both the deterministic and 
probabilistic forecast. Only class ‘B’ received high scores for the deterministic forecast, because the 
model got overly confident in predicting this class. The model significantly improved in the TFT-HARMONIE 
experiment, which is the only experiment that shows positive skill towards a climatological or persistence 
forecast. 
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6 Discussion 
In this study, we trained two types of ML algorithms, the Random Forest Classifier (RFC) and the Temporal 
Fusion Transformer (TFT), to forecast visibility categories at Amsterdam Airport Schiphol on lead times 
of up to 4 hours. Our aim was to assess the performance of independent RFC and TFT models in 
forecasting pre-defined visibility categories, at multiple locations and on relatively short lead times. In 
this section, we answer our research questions, discuss our main findings and how our work relates to 
the existing literature. We also discuss the limitations of this study and our recommendations for future 
research in section 6.1. 

Random Forest Classifiers versus Temporal Fusion Transformers 
Our first research question “How does a Random Forest Classifier perform in forecasting pre-defined 
visibility categories for two locations at Amsterdam Airport Schiphol, over a forecasting horizon of 4 
hours?” can be answered as follows: our RFCs show relatively high performance at short lead times, but 
quickly decline over time. Independent, recursive models show the highest performance over all. 

The RFC is a well-known, successful ML algorithm, recognized for its effectiveness in nowcasting and 
forecasting visibility (e.g. Dewi et al., 2020; Bartok et al., 2022; Castillo-Botón et al., 2022) as well as post-
processing NWM data (e.g. Bartokóva et al., 2015; Thomasson, 2023). Consistent with this earlier 
research, our RFC models demonstrated high performances at short lead times, specifically in horizontal 
visibility BZO phases ‘Good’ and ‘Marginal’. However, results quickly declined over the forecasting horizon, 
underperforming compared to earlier research on independent models.  

Performance was highest for the most-abundant classes, but low-visibility classes generally show lower 
initial performance. This indicates that even after balancing classes, the model is biased towards majority 
classes. Additionally, recursive RFCs showed a higher performance on both short and longer lead times 
of up to 4 hours than direct RFCs. To the author’s knowledge, there are no studies that benchmarked the 
use of direct and recursive approaches for the same visibility forecasting problem. Our finding that 
recursive RFCs perform better than direct RFCs, could be useful for future studies in deciding what 
approach is more suitable for their forecasting problem. 

Our second research question “How does a Temporal Fusion Transformer perform in forecasting pre-
defined visibility categories for two locations at Amsterdam Airport Schiphol, over a forecasting horizon 
of 4 hours?” can be answered as follows: the TFT shows accurate results across the entire forecasting 
horizon for all classes, when used as a probabilistic model. Performance is best for low-visibility classes. 
The high performance of TFTs in visibility forecasting shows the potential of the application of these 
relatively new ML models in the meteorological field.   

The TFT is a relatively new model, introduced by Ross and Dollár (2017). The model was designed for 
multi-variate time-series forecasting and was only recently applied as a regressor to forecasting visibility 
conditions by Wehrli et al. (2024).  Following their promising results, we applied the TFT to a similar 
forecasting problem, but as a classifier. To the author’s knowledge, this was the first introduction of a TFT 
as a classifier for predicting visibility conditions. We also applied a relatively new loss function ‘Focal 
Loss’, designed to handle class imbalance. We found that TFTs showed high performance as a 
probabilistic forecast, specifically in low-visibility categories, outperforming the regressor by Wehrli et al. 
(2024). Our model also outperformed research studies on decision tree-based visibility forecasting 
(Ohashi & Hara, 2024). Moreover, our TF showed better skill in the most extreme low-visibility class ‘D’ 
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than the current forecast for Schiphol, HARMONIE-QRF. The application of a TFT could result in significant 
improvements in forecasting extremely low visibility at Schiphol.  

The Focal Loss function also has the opportunity to assign weights to classes, which generally did not 
improve performance. We suspect that assigning weights skewed the natural balance of the dataset. 
Weighting made the TFT model too confident in rare classes, leading to many false positives. Lower 
probabilities reflect the natural low occurrence of fog events better. However, there were a few exceptions, 
indicating that the right balance in class weighting could positively influence predictions.  

Class-wise performance 
Our study was one of the few examples that assessed the performance of ML models per class. Our RFCs 
scored best at the boundaries of the visibility range, like class ‘Good’ and ‘D’. This pattern was recognized 
by Castillo-Botón et al. (2022), whose model also struggled to forecast intermediate classes. Although 
model showed slightly higher performance overall, it is important to note that Castillo-Botón et al. (2022) 
defined classes based on a statistical analysis of the dataset. Oppositely, our classes were pre-defined 
based on LVNL (Air Traffic Control the Netherlands) regulations (see: Background Information – Low 
Visibility Operations at Amsterdam Airport Schiphol). This increases the complexity of the forecasting 
task, because distinctions between intermediate classes might be less apparent and, therefore, more 
challenging for the ML algorithm to detect. To the author’s knowledge, there is no other research on 
independent RFCs that forecast visibility conditions in pre-defined classes. Our results indicate that 
models predict classes slightly less accurately when using pre-defined classes, but show similar patterns 
in relative class performance.  

Conversely, our TFTs showed higher performance for low-visibility conditions, likely due to the 
probabilistic nature of the predictions. The probabilities allowed for more nuanced predictions, capturing 
the uncertainty inherent in rare events. We cannot compare our findings on class-wise performance since 
there has not been other research on TFT classifiers for forecasting visibility conditions.  

Location-wise performance 
Earlier research on machine learning (ML) algorithms for visibility conditions always focused on 
forecasting for either one location (Bartok et al., 2022; Castillo-Botón et al., 2022; Wehrli et al., 2024) or 
a NWM gridded domain ((Thomasson, 2023). In this research, we aimed to produce forecasts for two 
separate locations that were very closely related but showed differences in fog occurrence.  

We found some differences in performances between the two forecasting locations (BZO West and BZO 
Center). BZO West generally showed higher performance for low-visibility classes. This is likely related to 
the slightly higher abundance of these classes in this location, as BZO West contained 1% more data in 
low-visibility classes. It suggests that models could improve further if more low-visibility data is available.  

Furthermore, predictions were generally more confident in BZO West. We hypothesized this could be due 
to greater persistence or variability in low-visibility classes, but BZO West actually showed shorter class 
durations (see Appendix E), and the data in this location was less variable. Possibly, the higher confidence 
is also related to the higher abundance of low-visibility data in BZO West, but not all results confirmed this 
idea. Additionally, a possible explanation is that boundaries of conditions related to the classes were 
more distinctly defined in BZO West. We did not perform analyses on this. 

A key takeaway from our research is that ML methods were able to distinguish between two locations that 
were very close in terms of distance but showed differences in meteorological conditions and fog 
occurrence. It shows the potential of using ML models for forecasts on small spatial scales.  
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Observational versus Numerical Weather Model input data 
As explained (see Background Information – Machine Learning), many ML algorithms have been applied 
to visibility forecasting as post-processing techniques for Numerical Weather Models (NWM) (e.g. 
Bartoková et al., 2015; Thomasson, 2023). This research was mainly aimed to independently forecast 
visibility using ML, but we also performed experiments on using NWM data as input.  

Our research question “How does the performance of each model change when including NWM data as 
input, e.g. using the model as a post-processing technique?” can be answered as follows: models that 
forecasted horizontal visibility with NWM data as input generally showed a similar or lower performance 
than independent ML algorithms, specifically at short lead times. This is an important result of this 
research, as it highlights that NWM data is not always necessary to produce accurate visibility forecasts. 
It shows the potential of using independent ML algorithms for visibility forecasting. Using ML models 
independently, without the input of NWM models, maximizes the benefits of using ML: it is quick, cheap, 
and easy to implement.  

Horizontal Visibility versus RVR versus Vertical Visibility 
Finally, we benchmarked the performance of models using different targets, namely horizontal visibility, 
RVR and vertical visibility. All targets have been investigated before (e.g. Boneh et al., 2015; Colabone et 
al., 2015; Guijo-Rubio et al., 2018) but only a few studies conducted studies with more than one target 
(e.g. Wehrli et al., 2024), To the author’s knowledge we were the first to directly compare the 
performances of identical models these three different targets. 

Generally, models performed best in forecasting BZO phases that were based on horizontal visibility. 
Introducing RVR into the dataset improved performance of intermediate classes like class ‘A’, but the 
sparseness of extreme values caused overall performance in low-visibility classes to decrease.  

The models generally struggled with accurately forecasting BZO phases based on vertical visibility. These 
performances were lower than those found in other research (Wehrli et al., 2024). We suspect our data 
was of insufficient quality for accurate prediction of vertical visibility (see Limitations and 
Recommendations for Future Research). The introduction of HARMONIE did show the most improvement 
for vertical visibility forecasts compared to other targets. We suspect this because vertical visibility is 
more dependent on large-scale meteorological dynamics (Tiedtke, 1993; Matveev, 2012). Therefore, 
models struggle when using short-term observations as input only, but improve when using more large-
scale and smoothed data like NWM data. An important takeaway for future research is that ML models 
show more potential for forecasting horizontal visibility and generally require larger-scale data when 
forecasting vertical visibility.  
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6.1 Limitations and Recommendations for Future Research 
In this section, we elaborate on the limitations of this research. We base the limitations on four stages in 
the model training process: the quality of the input data, the preparation of the input data, the training and 
tuning of the models, and the final evaluation of the Random Forest Classifier (RFC) and the Temporal 
Fusion Transformer (TFT). We also discuss implications and recommendations for future research. 

Data Quality 
A key limitation of this study was the relatively short time range of the dataset. Only 5 years were available, 
of which 4 were used for training and 1 for evaluation.  Herman and Schumacher (2016) concluded 3 years 
is the minimum amount of data needed to train a model to forecast visibility conditions. Even though our 
dataset should be sufficient, longer periods of data would have been beneficial for capturing rare events. 
The 5-year dataset also did not contain enough samples to train the TFT (see Results – Runway Visual 
Range). Moreover, the dataset used to train models on HARMONIE data was only 3 years long. As 1 year 
was used for evaluation, only 2 years remained for training the models. This was likely too short for the 
model to capture all meaningful relationships in the variables. For future research, we recommend 
expanding the dataset to expose the model to a sufficient amount of rare events.  

Additionally, this HARMONIE dataset spanned from 2020 to 2023, while the observational dataset had a 
time range of 2012 through 2017. For this reason, we were not able to use the same observational 
variables as targets for these models. The distribution of fog events did not differ significantly (see 
Appendix E), but small variations might have slightly impacted model training. This therefore did not allow 
for a complete fair comparison of model performance. Future studies that aim to benchmark ML model 
performances on different types of input data should ensure these datasets have the same time coverage.  

Both datasets contained a substantial amount of missing variables, mostly in the observational dataset. 
We used imputation methods to complete the dataset, which showed minimal differences in the dataset’s 
statistics. However, the missing data may have prevented the model from understanding relationships 
between the target and variables that contained a large number of imputed variables. A longer dataset 
would also minimize this effect. 

Initially, this research’s aim was to produce visibility forecasts for multiple locations at Amsterdam Airport 
Schiphol. After reviewing the dataset, it appeared that data was not consistently available across all 
sensors. Because of that reason, we had to aggregate the data to form only two locations. This involved a 
simple aggregation of averaging all available variables over the BZO area. This process may have removed 
fine spatial and temporal details. Future research could look into more graceful methods for aggregating 
this data to maintain more details. 

Finally, the availability of RVR data was most limited. RVR data was only recorded when horizontal visibility 
dropped below 1500 meters, and it was only recorded at active runways. Because we aimed to train the 
models on this variable, a full dataset was necessary. The issue was resolved by imputing RVR values into 
the horizontal visibility data whenever available. This approach may have altered the statistics of the 
dataset by skewing its distribution to higher values. When training on RVR, future studies should aim to 
create a full dataset of the variable, for example by manually calculating it using runway light luminance.  

Dataset Preprocessing 
To handle class imbalance, necessary to reduce bias in training RFCs, we applied balancing techniques 
to this dataset. The creation of synthetic samples in low-visibility classes compromised the temporal 
continuity of the data, likely affecting time-dependent predictions by obstructing the model in finding 
relevant temporal dependencies. The results also showed that the models were still biased towards 
majority classes, even after applying balancing techniques. Future research should look into applying 
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more extensive resampling techniques to further address this residual bias. Additionally, models like a 
TFT generally do not require balanced datasets. However, there are examples of research where balancing 
techniques have been applied before training a TFT  (Zhang et al., 2022; Anjum et al., 2023; Luo et al., 
2024). Future research might consider including balancing techniques, but maintaining the temporal 
continuity of the dataset would be challenging. 

We recommend experimenting with ranges of lagged variables in RFC’s and TFT’s. Performance of the RFC 
models quickly deteriorated over lead times, which could be improved by adding more historical 
information. Including lags in TFT’s could increase their awareness of diurnal and seasonal patterns. 

For the TFT models, it was necessary to aggregate data into 10-minute intervals. We did so by averaging 
values over each 10-minute interval. This aggregation reduced the relative frequency of rare events, 
possibly making it more difficult for the models to train on these classes. Additionally, the larger timesteps 
could have smoothed the data too much, limiting the model’s ability to capture short-term fluctuations. 
We recommend to do a more extensive research into the effect of possibly smoothing data to reduce the 
effects of noisiness, while still maintaining relevant short-term fluctuations.  

Finally, we were limited in the scope of this study to execute extensive preprocessing steps on the datasets 
like outlier removal, noise reduction or further smoothing. As an example, another factor that likely limited 
reduced visibility were high rainfall intensities. It is recommended to take a more thorough approach to 
preprocessing, reducing the possible effects of noise on the model’s performance. 

Model Tuning 
The limited scope of this research also limited our ability to thoroughly tune hyperparameters or conduct 
feature importance analyses, both of which could have significantly enhanced model performance. We 
performed some hyperparameter tuning for the TFT models, but as these models contain a vast amount 
of hyperparameters, a more thorough approach could still yield better results.  

In addition, our experiments regarding class weighting were limited. We applied one set of class weights 
to the Focal Loss function, which appeared to negatively affect results. However, it might be worth 
experimenting with other sets of class weights. Our class weights were only one order of magnitude, which 
did not fully reflect the level of imbalance in the dataset. A more systematic approach could improve the 
model’s ability to handle rare cases. However, since our results showed negative impact by class 
weighting, we do not expect that any class weighting will cause major improvements.  

Finally, we did not explore the possibility of TFTs producing multiple outputs. This feature allows the model 
to produce probabilities for multiple targets simultaneously, possibly capturing more interdependencies 
between targets. We recommend future studies explore this option further. 

Model Evaluation 
The methods for calculating evaluation metrics may have slightly skewed results. The One-vs-Rest 
approach, used to calculate metrics for RFCs, likely impacted performance in boundary cases. In these 
cases, the model is forced to choose one class as a forecasted class, even though conditions may have 
been very similar to the adjacent class. This approach makes the results less nuanced.  

When transforming the probabilistic forecast of a TFT to a deterministic forecast, we did so by taking the 
class with the highest probability as the ‘predicted class’. In cases where the probabilities for multiple 
classes were close, this approach may have resulted in lower performance scores for classes that were 
ranked second or third. Alternatively, we recommend to use probability threshold. It allows the 
deterministic forecast to forecast multiple classes for a timestep, if multiple classes exceeded the 
threshold. This provides a more nuanced view of the model’s certainty and performance.  
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7 Conclusion 
In this study, we developed two types of classifying machine learning algorithms – Random Forest 
Classifiers (RFC) and Temporal Fusion Transformers (TFT) to forecast visibility conditions at Amsterdam 
Airport Schiphol over a lead time of 4 hours with timesteps of 10 minutes. We evaluated the models’ 
performances using horizontal visibility, Runway Visual Range (RVR) and vertical visibility as determining 
variables for the target classes, focusing on performance in low-visibility classes. 

In general, RFCs proved successful in predicting visibility conditions at short-time scales, particularly for 
high-visibility classes ‘Good’ and ‘Marginal’ and extreme classes like BZO phase ‘D’. However, their 
performance declined quickly over the forecasting horizon, especially for intermediate classes. Recursive 
models generally performed better than direct models. 

The TFTs, fitted with a custom loss function, performed well at classifying visibility categories. The models 
were explicitly capable of predicting low-visibility class probabilities, outperforming earlier research for 
these classes. High-visibility classes ‘Good’ and ‘Marginal’ also showed high performance. Assigning 
weights to the loss function worsened the model’s performance.  

All models performed better when forecasting horizontal visibility over vertical visibility. Introducing RVR 
as a target improved class performance of intermediate classes. Introducing NWM as input data 
sometimes improved performance of persistent classes, but negatively impacted predictions for rare 
events. Vertical visibility predictions improved most from including NWM data, because this target 
variable is more dependent on large-scale dynamics.  

To conclude, this study introduced a the novel use of a Temporal Fusion Transformer fitted with a custom 
Focal Loss function to forecast visibility categories. We found this approach to be successful, performing 
similar or better than earlier research. We recommend continuing research on this model type, including 
more extensive hyperparameter tuning, feature importance analyses and graceful handling of class 
imbalance, and exploring the multi-output possibilities of the TFT to further refine forecasts.  
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